2,776
Views
26
CrossRef citations to date
0
Altmetric
Technical Paper

Modeling and optimization of wet flue gas desulfurization system based on a hybrid modeling method

, , , , , , & show all
Pages 565-575 | Received 19 Jul 2018, Accepted 12 Nov 2018, Published online: 13 Mar 2019

References

  • Ahmadi, A., Y. A. Beromi, and H. R. Soleymanpour. 2016. Optimal load shedding by a new binary PSO. Compel Int. J. Comput. Math. Electr. Electron. Eng. 35 (3):898–909. doi:10.1108/compel-01-2016-0033.
  • Brogren, C., and H. T. Karlsson. 1997. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chem. Eng. Sci. 52 (18):3085–99. doi:10.1016/S0009-2509(97)00126-7.
  • Brown, K., W. Kalata, and R. Schick. 2014. Optimization of SO2 Scrubber using CFD Modeling. Procedia Eng. 83:170–80.
  • Carletti, C., C. De Basio, E. Makila, J. Salonen, and T. Westerlund. 2015. Optimization of a wet flue gas desulfurization scrubber through mathematical modeling of limestone dissolution experiments. Ind. Eng. Chem. Res. 54 (40):9783–97. doi:10.1021/acs.iecr.5b02691.
  • Chang, W.-D., and C.-Y. Chen. 2014. PID controller design for MIMO processes using improved particle swarm optimization. Circuits Syst. Signal Process. 33 (5):1473–90. doi:10.1007/s00034-013-9710-4.
  • Chen, G., L. Liu, P. Song, and D. Yangwei. 2014. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems. Energy Convers. Manag. 86:548–60. doi:10.1016/j.enconman.2014.06.003.
  • Chen, G. G., L. L. Liu, Y. Y. Guo, and S. W. Huang. 2016. Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems. Compel Int. J. Comput. Math. Electr. Electron. Eng. 35 (1):350–72. doi:10.1108/compel-02-2015-0030.
  • Chen, L., Y. Hontoir, D. Huang, J. Zhang, and A. Julian Morris. 2004. Combining first principles with black-box techniques for reaction systems. Control. Eng. Pract. 12 (7):819–26. doi:10.1016/j.conengprac.2003.09.006.
  • Colla, V., G. Nastasi, S. Baldetti, and M. Del Seppia. 2016. Multi-Objective Particle Swarm Optimization applied to distribution fitting for industrial data. 2016 Ieee 2nd International Forum on Research And Technologies for Society And Industry Leveraging a Better Tomorrow (Rtsi) 342–47, Bologna, Italy.
  • Dou, B., W. Pan, Q. Jin, W. Wang, and L. Yu. 2009. Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization. Energy Convers. Manag. 50 (10):2547–53. doi:10.1016/j.enconman.2009.06.012.
  • Gerbec, M., A. Stergarsek, and R. Kocjancic. 1995. Simulation model of wet flue gas desulphurization plant. Comput. Chem. Eng. 19 (Supplement 1):283–86. doi:10.1016/0098-1354(95)87050-4.
  • Hinchliffe, M., G. Montague, M. Willis, and A. Burke. 2003. Hybrid approach to modeling an industrial polyethylene process. Aiche J. 49 (12):3127–37. doi:10.1002/(ISSN)1547-5905.
  • Hou, P., J. Bai, and J. Yin. 2013. On-line monitoring and optimization of performance indexes for limestone wet desulfurization technology. Appl. Mech. Mater. 9:295–98.
  • Huang, Y.-C., and Y.-H. Li. 2014. Experiments of iterative learning control system using particle swarm optimization by new bounded constraints on velocity and positioning. Eng. Computation. 31 (2):250–66. doi:10.1108/ec-01-2013-0013.
  • Kallinikos, L. E., E. I. Farsari, D. N. Spartinos, and N. G. Papayannakos. 2010. Simulation of the operation of an industrial wet flue gas desulfurization system. Fuel Process. Technol. 91 (12):1794–802. doi:10.1016/j.fuproc.2010.07.020.
  • Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia.
  • Kramar, D., D. Cica, B. Sredanovic, and J. Kopac. 2016. Design of fuzzy expert system for predicting of surface roughness in high-pressure jet assisted turning using bioinspired algorithms. Ai Edam-Artif. Intell. Eng. Des. Anal. Manuf. 30 (1):96–106. doi:10.1017/s0890060415000189.
  • Li, C., J. Zhang, Y. Zhang, L. Qinwu, C. Zheng, X. Gao, and Z. Luo. 2015. Removal efficiency of high sulfur dioxide in WFGD based on dual-pH value control. Acta Sci. Circumstantiae 35 (12):4081–87.
  • Liu, D., and H. Yu. 2012. A study of experimental and improved absorption model for the spray towers of wet flue gas desulfurization. Adv. Mater. Res. 6:550–53.
  • Liu, D., L. Xiaowei, Y. Huang, and H. Jianchen. 2011. Sensitivity analysis on limestone density of WFGD. Chin. J. Environ. Eng. 5 (10):2321–25.
  • Liu, Y., C. Niu, H. Cheng, and X. Liu. 2012. Target optimization of wet flue gas desulfurization control system in 330 MW unit. Electr. Power 45 (4):68–72.
  • Ministry of Environmental Protection of PRC, General Administration of Quality Supervision, Inspection and Quarantine of PRC. 2011. Emission Standard of Air Pollutants for Thermal Power Plants, GB/T 13223-2011.
  • National Bureau of Statistics [NBS]. 2017. China energy statistical yearbook 2017. Beijing: National Bureau of Statistics.
  • Neveux, T., and Y. Le Moullec. 2011. Wet industrial flue gas desulfurization unit: Model development and validation on industrial data. Ind. Eng. Chem. Res. 50 (12):7579–92. doi:10.1021/ie102239q.
  • Ortiz, F. J., G. F. Vidal, P. Ollero, A. L. Salvador, V. Cortés, and A. Giménez. 2006. Pilot-plant technical assessment of wet flue gas desulfurization using limestone. Ind. Eng. Chem. Res. 45 (4):1466–77. doi:10.1021/ie051316o.
  • Ou, S., and L. E. K. Achenie. 2005. A hybrid neural network model for PEM fuel cells. J. Power. Sources 140 (2):319–30. doi:10.1016/j.jpowsour.2004.08.047.
  • Qian, D. U., G. A. O. Wang Jianfeng, Z. G. Jianmin, and W. U. Shaohua. 2011. Optimization on inlet angle for spray tower of industrial boiler by numerical simulation. J. Therm. Sci. Technol. 10 (2):174–79.
  • Ren, Z., L. Sun, and Y. Deng. 2012. Modeling and optimization research of CFB-FGD based on improved genetic algorithms and BP neural network. Adv. Mater. Res. 610–613:1601–1604.
  • Sui, Z., Y. Zhang, Y. Peng, P. Norris, Y. Cao, and W.-P. Pan. 2016. Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel 185:863–71. doi:10.1016/j.fuel.2016.08.051.
  • Tan, W., Z. Zhang, L. Hongyi, L. Youxu, and Z. Shen. 2017. Carbonation of gypsum from wet flue gas desulfurization process: Experiments and modeling. Environ. Sci. Pollut. Res. 24 (9):8602–08. doi:10.1007/s11356-017-8480-0.
  • Villanueva Perales, A. L., F. J. Gutierrez Ortiz, F. Vidal Barrero, and P. Ollero. 2010. Using neural networks to address nonlinear pH control in wet limestone flue gas desulfurization plants. Ind. Eng. Chem. Res. 49 (5):2263–72. doi:10.1021/ie9007584.
  • Villanueva Perales, A. L., P. Ollero, F. J. Gutierrez Ortiz, and A. Gomez-Barea. 2009. Model predictive control of a wet limestone flue gas desulfurization pilot plant. Ind. Eng. Chem. Res. 48 (11):5399–405. doi:10.1021/ie801530x.
  • Wang, S., H. Sangao, L. Liu, S. Liang, and X. Hong. 2010. Operation optimuation and retrofit study of circulating slurry pump in FGD system of 600 MW unit. Electr. Power 43 (11):46–49.
  • Wang, S., and J. Hao. 2012. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 24 (1):2–13. doi:10.1016/S1001-0742(11)60724-9.
  • Warych, J., and M. Szymanowski. 2001. Model of the wet limestone flue gas desulfurization process for cost optimization. Ind. Eng. Chem. Res. 40 (12):2597–605. doi:10.1021/ie0005708.
  • Warych, J., and M. Szymanowski. 2002. Optimum values of process parameters of the “Wet Limestone Flue Gas Desulfurization System”. Chem. Eng. Technol. 25 (4):427–32. doi:10.1002/1521-4125(200204)25:4<427::aid-ceat427>3.3.co;2-o.
  • Wu, Y., L. Shen, and L. Zhang. 2011. Study on nonlinear pH control strategy based on external recurrent neural network. Procedia Eng. 15 (1):866–71.
  • Yang, J., Y. Kan, J. Zhang, and D. Liu. 2015. Simulation of internal flow field in tangential spray desulfurization tower. J. Eng. Therm. Energy Power 30 (4):593–97.
  • Yuan, T., Z. Jie, and J. Morris. 2001. Modeling and optimal control of a batch polymerization reactor using a hybrid stacked recurrent neural network model. Ind. Eng. Chem. Res. 40 (21):4525–35. doi:10.1021/ie0010565.
  • Zhao, J., B. Jin, and Z. Zhong. 2007. The degree of desulphurization of a limestone/gypsum wet FGD spray tower using response surface methodology. Chem. Eng. Technol. 30 (4):517–22. doi:10.1002/ceat.200600347.
  • Zhong, Y., X. Gao, W. Huo, Z.-Y. Luo, N. Ming-Jiang, and K.-F. Cen. 2008. A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Process. Technol. 89 (11):1025–32. doi:10.1016/j.fuproc.2008.04.004.
  • Zhu, J., W. Zhenyuan, Y. Shichao, Y. Zheng, Y. Yang, and J. Bai. 2015b. Modelling of wet limestone-gypsum flue gas desulfurization system in spray tower. J. Chem. Eng. Chin. Univ. 29 (1):220–25. doi:10.1002/cjoc.201400680.
  • Zhu, J., Y. Shi-Chao, J. Bai, W. Zhen-Yuan, Z.-H. Liu, and Y.-F. Yang. 2015a. A concise algorithm for calculating absorption height in spray tower for wet limestone-gypsum flue gas desulfurization. Fuel Process. Technol. 129:15–23. doi:10.1016/j.fuproc.2014.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.