6,022
Views
16
CrossRef citations to date
0
Altmetric
2019 Annual A&WMA Critical Review

Advances in science and applications of air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection

, , , , , , & show all

References

  • Achten, C., and J. T. Andersson. 2015. Overview of polycyclic aromatic compounds (PAC). Polycycl. Aromat. Compd. 35 (2–4):177–86. doi:10.1080/10406638.2014.994071.
  • AEP. 2016. Joint oil sands monitoring program emissions inventory full report. Accessed March 22, 2019. https://open.alberta.ca/publications/9781460125658.
  • Aherne, J. 2011. Uncertainty in critical load exceedance (UNCLE): Critical loads uncertainty and risk analysis for Canadian forest ecosystems. Canadian Council of Ministers of the Environment, report PN XXXX, 22.
  • Aherne, J., and M. Posch. 2013. Impacts of nitrogen and sulphur deposition on forest ecosystem services in Canada. Curr. Opin. Environ. Sustain. 5 (1):108–15. doi:10.1016/j.cosust.2013.02.005.
  • Akingunola, A., P. A. Makar, J. Zhang, A. Darlington, S.-M. Li, M. Gordon, M. D. Moran, and Q. Zheng. 2018. A chemical transport model study of plume rise and particle size distribution for the Athabasca oil sands. Atmos. Chem. Phys. 18:8667–88. doi:10.5194/acp-18-8667-2018.
  • Alberta Biodiversity Monitoring Institute, Canada. 2019. Our vision and mission. Accessed January 9, 2019. https://www.abmi.ca/home/about-us/our-vision-mission.html.
  • Alberta Energy Regulator, Canada. 2017. Crude bitumen production. Accessed March 22, 2019. https://www.aer.ca/providing-information/data-and-reports/statistical-reports/crude-bitumen-production.
  • Alberta Environment and Parks. 2016. Air pollutant and GHG emissions from mine faces and tailings ponds (second draft). Report prepared by Stantec Consulting Ltd., Clearstone Engineering Ltd and Intrisik Environmental Science Inc, 413.
  • Alberta Environment and Sustainable Resource Development. 2013. Report on the inventory of oil sands inventories. Internal Report, 88, April.
  • Alexander, A. C., and P. A. Chambers. 2016. Assessment of seven Canadian rivers in relation to stages in oil sands industrial development, 1972-2010. Environ. Rev. 24 (4):484–94. doi:10.1139/er-2016-0033.
  • Alexander, A. C., P. A. Chambers, and D. S. Jeffries. 2017. Episodic acidification of 5 rivers in Canada‘s oil sands during snowmelt: A 25-year record. Sci. Total Environ. 599-600:739–49. doi:10.1016/j.scitotenv.2017.04.207.
  • Andrew, M. E., M. A. Wulder, and T. A. Nelson. 2014. Potential contributions of remote sensing to ecosystem service assessments. Prog. Phys. Geogr. 38 (3):328–52. doi:10.1177/0309133314528942.
  • Arciszewski, T. J., K. R. Munkittrick, B. W. Kilgour, H. M. Keith, J. E. Linehan, and M. E. McMaster. 2017b. Increased size and relative abundance of migratory fishes observed near the Athabasca oil sands. Facets 2:833–58. doi:10.1139/facets-2017-0028.
  • Arciszewski, T. J., K. R. Munkittrick, G. J. Scrimgeour, M. G. Dubé, F. J. Wrona, and R. R. Hazewinkel. 2017a. Using adaptive processes and adverse outcome pathways to develop meaningful, robust, and actionable environmental monitoring programs. Integr. Environ. Assess. Manag. 13 (5):877–91. doi:10.1002/ieam.1938.
  • Arey, J., W. P. Harger, D. Helmig, and R. Atkinson. 1992. Bioassay-directed fractionation of mutagenic PAH atmospheric photooxidation products and ambient particulate extracts. Mutat. Res. Lett. 281 (1):67–76. doi:10.1016/0165-7992(92)90038-J.
  • Azuma, K., I. Uchiyama, S. Uchiyama, and N. Kunugita. 2016. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ. Res. 145:39–49. doi:10.1016/j.envres.2015.11.015.
  • Baray, S., A. Darlington, M. Gordon, K. L. Hayden, A. Leithead, S.-M. Li, P. S. K. Liu, R. L. Mittermeier, S. G. Moussa, J. O‘Brien, et al. 2018. Quantification of methane sources in the Athabasca Oil Sands Region of Alberta by aircraft mass balance. Atmos. Chem. Phys. 18:7361–78. doi:10.5194/acp-18-7361-2018.
  • Bari, M., W. Kindzierski, and S. Cho. 2014. A wintertime investigation of atmospheric deposition of metals and polycyclic aromatic hydrocarbons in the Athabasca Oil Sands region, Canada. Sci. Total Environ. 485–486:180–92. doi:10.1016/j.scitotenv.2014.03.088.
  • Bickerton, G., J. W. Roy, R. A. Frank, J. Spoelstra, G. Langston, L. Grapentine, and L. M. Hewitt. 2018. Assessments of groundwater influence on select river systems in the oil sands region of Alberta. Oil Sands Monitoring Program Technical Report Series No. 1.5, 32. ISBN 978-1-4601-4029-1.
  • Bilodeau, J. C., J. M. Gutierrez-Villagomez, L. E. Kimpe, P. J. Thomas, B. D. Pauli, V. L. Trudeau, and J. M. Blais. 2019. Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment. Aquat. Toxicol. 207:217–22. doi:10.1016/j.aquatox.2018.11.006.
  • Birks, S. J., S. Cho, E. Taylor, Y. Yi, and J. J. Gibson. 2017. Characterizing the PAHs in surface waters and snow in the Athabasca region: Implications for identifying hydrological pathways of atmospheric deposition. Sci. Total Environ. 603–604:570–83. doi:10.1016/j.scitotenv.2017.06.051.
  • Blum, J. D., M. W. Johnson, J. D. Gleason, J. D. Demers, M. S. Landis, and S. Krupa. 2012. Mercury concentration and isotopic composition of epiphytic tree lichens in the Athabasca Oil Sands Region. In Alberta Oil Sands: Energy, Industry and the Environment, ed. K. E. Percy, 373–90. Oxford, UK: Elsevier.
  • Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20 (1):30–59. doi:10.1890/08-1140.1.
  • Bosch, C., A. Andersson, M. Krusa, C. Bandh, I. Hovorkova, J. Klanova, T. Knowles, R. D. Pancost, R. P. Evershed, and O. Gustafsson. 2015. Source apportionment of polycyclic aromatic hydrocarbons in central European soils with compound-specific triple isotopes (_13C, _14C, and _2H). Environ. Sci. Technol. 49 (13):7657–65. doi:10.1021/acs.est.5b01190.
  • Boutin, C., and D. J. Carpenter. 2017. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta. Sci. Total Environ. 576:829–39. doi:10.1016/j.scitotenv.2016.10.062.
  • Bradley, P. M., C. A. Journey, J. P. Berninger, D. T. Button, J. M. Clark, S. R. Corsi, L. A. DeCicco, K. G. Hopkins, B. J. Huffman, N. Nakagaki, et al. 2019. Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. Sci. Total Environ. 655:70–83. doi:10.1016/j.scitotenv.2018.11.186.
  • Brady, J. M., T. A. Crisp, S. Collier, T. Kuwayama, S. D. Forestieri, V. Perraud, Q. Zhang, M. J. Kleeman, C. D. Cappa, and T. H. Bertram. 2014. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles. Environ. Sci. Technol. 48 (19):11405–12. doi:10.1021/es504354p.
  • Brander, S. M., A. D. Biales, and R. E. Connon. 2017. The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36 (10):2565–73. doi:10.1002/etc.3930.
  • Briggs, G. A. 1985. Analytical parameterizations of diffusion: The convective boundary layer. J. Clim. Appl. Meteorol. 24 (11):1167–86. doi:10.1175/1520-0450(1985)024≤1167:APODTC≥2.0.CO;2.
  • Briggs, G. A. 1969. Plume rise. Springfield, Virginia: U.S. Atomic Energy Commission, Division of Technical Information.
  • Briggs, G. A. 1975. Plume rise predictions. In Lectures on air Pollution and environmental impact analyses, ed, D. Haugen, 59–111. Boston: University of Chicago Press.
  • Briggs, G. A. 1984. Plume rise and buoyancy effects, atmospheric sciences and power production. Oak Ridge, USA: Technical Information Center, U.S. Dept. of Energy.
  • Brook, J. R., and M. D. Moran. 2000. International workshop on techniques and problems in modelling size-distributed aerosol formation and composition. Atmos. Environ. 34:1153–54.
  • Campbell, H. E., . D., R. Kindopp, S. MacMillan, P. Martin, E. Neugebauer, L. Patterson, and J. Shatford. 2013. Mercury trends in colonial waterbird eggs downstream of the oil sands region of Alberta, Canada. Environ. Sci. Technol. 47 (20):11785–92. doi:10.1021/es402542w.
  • Carlton, A. G., B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim, and B. Ervens. 2007. Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmos. Environ. 41 (35):7588–602. doi:10.1016/j.atmosenv.2007.05.035.
  • Carou, S., I. Dennis, J. Aherne, R. Ouimet, P. A. Arp, S. A. Watmough, I. DeMerchant, M. Shaw, B. Vet, V. Bouchet, et al. 2008. A national picture of acid deposition critical loads for forest soils in Canada. Canadian Council of Ministers of the Environment, PN 1412, 6.
  • CCME, Canada. 1999. Canadian sediment quality guidelines for the protection of aquatic life. Accessed January 9, 2019. http://ceqg-rcqe.ccme.ca/download/en/312.
  • CCME, Canada. 2003. Canadian sediment quality guidelines for the protection of aquatic life. Accessed March 22, 2019. http://ceqg-rcqe.ccme.ca/download/en/221.
  • Chambers, P. A., A. Alexander Trusiak, J. Kirk, C. Manzano, D. Muir, C. Cooke, and R. Hazewinkel. 2018. Surface water quality of lower athabasca river tributaries. Oil Sands Monitoring Program Technical Report Series No. 1.3, 34. ISBN 978-1-4601-4027-7.
  • Cheng, Y., S.-M. Li, M. Gordon, and P. Liu. 2018. Size distribution and coating thickness of black carbon from the Canadian oil sands operations. Atmos. Chem. Phys. 18:2653–67. doi:10.5194/acp-18-2653-2018.
  • Cheng, Y., S.-M. Li, J. Liggio, M. Gordon, A. Darlington, Q. Zheng, P. Liu, and M. Wolde. 2019. Top down determination of black carbon emission from oil sands facilities in Alberta, Canada using aircraft measurements. Environ. Scie. Technol..
  • Cho, S., K. Sharma, B. Brassard, and R. Hazewinkel. 2014. Polycyclic aromatic hydrocarbon deposition in the snowpack of the Athabasca oil sands region of Alberta, Canada. Water. Air Soil Pollut. 225 (5):1910. doi:10.1007/s11270-014-1910-4.
  • Clarkson, T. W. 1993. Mercury: Major issues in environmental health. Environ. Health Perspect. 100:31–38. doi:10.1289/ehp.9310031.
  • Clemente, J. S., and P. M. Fedorak. 2005. A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60 (5):585–600. doi:10.1016/j.chemosphere.2005.02.065.
  • CLRTAP. 2017. Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Accessed March 22, 2019. http://icpmapping.org/.
  • Cooke, C. A., J. L. Kirk, D. C. G. Muir, J. A. Wiklund, X. Wang, A. Gleason, and M. S. Evans. 2017. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada). Environ. Res. Lett. 12:124001.
  • Cruz-Martinez, L., K. J. Fernie, C. Soos, T. Harner, F. Getachew, and J. Smits. 2015. Detoxification, endocrine, and immune responses of tree swallow nestlings naturally exposed to air contaminants from the Alberta oil sands. Sci. Total Environ. 502:8–15. doi:10.1016/j.scitotenv.2014.09.008.
  • Cruz-Martinez, L., and J. Smits. 2012. Potential to use animals as monitors of ecosystem health in the Oil Sands Region. Environment. doi:10.7939/R31C4G.
  • Culp, J. M., I. G. Droppo, P. Di Cenzo, A. Alexander-Trusiak, D. J. Baird, S. Beltaos, B. Bickerton, B. Bonsal, B. Rb, P. A. Chambers, et al. 2018a. Synthesis report for the water component, Canada-Alberta joint oil sands monitoring: Key findings and recommendations. Oil Sands Monitoring Program Technical Report Series No. 1.1, 46. ISBN 978-1-4601-4025-3.
  • Culp, J. M., N. E. Glozier, D. J. Baird, F. J. Wrona, R. B. Brua, A. L. Ritcey, D. L. Peters, R. Casey, C. B. Choung, C. J. Curry, et al. 2018b. Assessing ecosystem health in benthic macroinvertebrate assemblages of the athabasca river main stem, tributaries, and peace-athabasca delta. Oil Sands Monitoring Technical Report Series No. 1.7, 82. ISBN: 978-1-4601-4155-7.
  • Davies, M. J. E. 2012. Air quality modelling in the Athabasca Oil Sands Region. In Alberta Oil Sands: Energy, industry and the environment, ed. K. E. Percy, 267–309. Oxford, UK: Elsevier.
  • De Araujo Barbosa, C. C., P. M. Atkinson, and J. A. Dearing. 2015. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 52:430–43. doi:10.1016/j.ecolind.2015.01.007.
  • Dickson, W. 1978. Some effects of acidification on Swedish lakes. Verh. Internat Verein. Limnol. 20:851–56.
  • Dolgova, S., D. Crump, E. Porter, K. Williams, and C. E. Hebert. 2018a. Stage of development affects dry weight mercury concentrations in bird eggs: Laboratory evidence and adjustment method. Environ. Toxicol. Chem. 37 (4):1168–74. doi:10.1002/etc.4066.
  • Dolgova, S., B. N. Popp, K. Courtoreille, R. H. M. Espie, B. Maclean, J. R. Straka, G. R. Tetreault, S. Wilkie, and C. E. Herbert. 2018b. Spatial trends in a biomagnifying contaminant: Application of amino acid compound–Specific stable nitrogen isotope analysis to the interpretation of bird mercury levels. Environ. Toxicol. Chem. 37 (5):1466–75. doi:10.1002/etc.4113.
  • Dowdeswell, L., P. Dillon, S. Ghoshal, A. Miall, J. Rasmussen, and J. P. Smol. 2010. A foundation for the future: Building an environmental monitoring system for the system for the Oil Sands. Gatineau: Environment Canada.
  • Droppo, I. G., P. Di Cenzo, J. Power, C. Jaskot, P. Chambers, A. C. Alexander, J. Kirk, and D. Muir. 2018b. Temporal and spatial trends in riverine suspended sediment and associated polycyclic aromatic compounds (PAC) within the Athabasca Oil Sands Region. Sci. Total Environ. 626:1382–93. doi:10.1016/j.scitotenv.2018.01.105.
  • Droppo, I. G., T. Prowse, B. Bonsal, Y. Dibike, S. Beltaos, B. Krishnappan, H.-L. Eum, S. Kashyap, A. Sakibaeinia, and A. Gupta. 2018a. Regional Hydro-climatic and Sediment Modelling for the Lower Athabasca River Oil Sands Region. Oil Sands Monitoring Program Technical Report Series No. 1.6, 89. ISBN 978-1-4601-4030-7.
  • Dziedek, C., W. Härdtle, G. von Oheimb, and A. Fichtner. 2016. Nitrogen addition enhances drought sensitivity of young deciduous tree species. Front. Plant Sci. 77. doi:10.3389/fpls.2016.01100.
  • Earl, S. R., H. M. Valett, and J. R. Webster. 2006. Nitrogen saturation in stream ecosystems. Ecology 87 (12):3140–51.
  • ECCC, Environment and Climate Change Canada. 2016. Canada’s Black carbon inventory, 2016 edition. Accessed April 5, 2019. https://ec.gc.ca/air/3F796B41-0B87-4C14-B76D-899D23CD0295/Black%20Carbon%202016-EN-Final.pdf.
  • Eldering, A., and G. R. Cass. 1996. Source-oriented model for air pollutant effects on visibility. J. Geophys. Res. Atmos. 1011 (14):19343–70. doi:10.1029/95JD02928.
  • Environment Canada. 2011. Eds. F.J. Wrona, P. di Cenzo, and K. Schaefer. Integrated monitoring plan for the oil sands – Expanded geographic extent for water quality and quantity, aquatic biodiversity and effects, and acid sensitive lake component. http://publications.gc.ca/collections/collection_2011/ec/En14-49-2011-eng.pdf.
  • Environment Canada, Canada. 2016. Environment and climate change Canada & Alberta environment and parks): Joint oil sands monitoring program emissions inventory compilation. Accessed April 5, 2019. https://open.alberta.ca/publications/9781460125658.
  • Ervens, B., G. Feingold, G. J. Frost, and S. M. Kreidenweis. 2004. A modeling of study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. Atmos. 109 (15):15201–20. doi:10.1029/2003JD004387.
  • Evans, M. S., and A. Talbot. 2012. Investigations of mercury concentrations in walleye and other fish in the Athabasca River ecosystem with increasing oil sands developments. Environ. Monit. Assess. 14 (7):1989–2003. doi:10.1039/c2em30132f.
  • Fernie, K. J., L. Cruz-Martinez, L. Peters, V. Palace,And, and J. Smits. 2016. Inhaling benzene, toluene, nitrogen dioxide, and sulfur dioxide, disrupts thyroid function in captive American kestrels (Falco sparverius). Environ. Sci. Technol. 50 (20):11311–18. doi:10.1021/acs.est.6b03026.
  • Fernie, K. J., S. C. Marteinson, D. Chen, A. Eng, T. Harner, J. Smits, and C. Soos. 2018a. Elevated exposure, uptake and accumulation of polycyclic aromatic hydrocarbons by nestling tree swallows (Tachycineta bicolor) through multiple exposure routes in active mining-related areas of the Athabasca oil sands region. Sci. Total Environ. 624:250–61. doi:10.1016/j.scitotenv.2017.12.123.
  • Fernie, K. J., S. C. Marteinson, D. Chen, L. Peters, V. Palace, and J. Smits. 2019. Changes in thyroid function of nestling tree swallows (Tachycineta bicolor) in relation to polycyclic aromatic compounds and other stressors in the Athabasca Oil Sands. Environ. Res. 169:464–75. doi:10.1016/j.envres.2018.11.031.
  • Fernie, K. J., S. C. Martienson, C. Soos, D. Chen, L. Cruz-Martinez, and J. Smits. 2018. Reproductive and developmental changes in tree swallows (Tachycineta bicolor) are influenced by multiple stressors, including polycyclic aromatic compounds, in the Athabasca Oil Sands. Environ. Pollut. 238:931–41. doi:10.1016/j.envpol.2018.03.074.
  • Fioletov, V. E., C. Mclinden, N. Krotkov, and C. Li. 2015. Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys. Res. Lett. 42:6. doi:10.1002/2015GL063148.
  • Fioletov, V. E., C. A. McLinden, S. K. Kharol, N. A. Krotkov, C. Li, J. Joiner, M. D. Moran, R. Vet, A. J. H. Visschedijk, and H. A. C. Denier van der Gon. 2017. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions. Atmos. Chem. Phys. 17:12597–616. doi:10.5194/acp-17-12597-2017.
  • Fox, D. G. 1981. Judging air quality model performance - summary of the AMS Workshop on Dispersion Model Performance, Woods Hole, Mass., 8-11 September 1980. Bull. Am. Met. Soc. 62:599–609. doi:10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2.
  • Fox, D. G. 1984. Uncertainty in air quality modelling – A summary of the AMS Workshop on Quantifying and Communicating Model Uncertainty, Woods Hole, Mass., September 1982. Bull. Am. Met. Soc. 65:27–36. doi:10.1175/1520-0477(1984)065<0027%3AUIAQM>2.0.CO%3B2.
  • Gagné, F., A. Bruneau, P. Turcotte, C. Gagnon, and E. Lacaze. 2017. An investigation of the immunotoxicity of oil sands processed water and leachates in trout leukocytes. Ecotoxicol. Environ. Saf. 141:43–51. doi:10.1016/ecoenv.2017.03.012.
  • Gagné, F., M. Douville, C. André, T. Debenest, A. Talbot, J. Sherry, L. M. Hewitt, R. A. Frank, M. E. McMaster, J. Parrot, et al. 2012. Differential changes in gene expression in rainbow trout hepatocytes exposed to extracts of oil sands process-affected water and the Athabasca River. Comp. Biochem. Physiol. C. 155 (4):551–59. doi:10.1016/j.cbpc.2012.01.004.
  • Galarneau, E., B. P. Hollebone, Z. Yang, and J. Schuster. 2014. Preliminary measurement-based estimates of PAH emissions from oil sands tailings ponds. Atmos. Environ. 97:332–35. doi:10.1016/j.atmosenv.2014.08.038.
  • Gentes, M. L., A. McNabb, C. Waldner, and J. Smits. 2007. Increased thyroid hormone levels in tree swallows (Tachycineta bicolor) on reclaimed wetlands of the Athabasca oil sands. Arch. Environ. Contam. Toxicol. 53 (2):287–92. doi:10.1007/s00244-006-0070-y.
  • Gerner, N. V., M. Koné, M. S. Ross, A. Pereira, A. C. Ulrich, J. W. Martin, and M. Liess. 2017. Stream invertebrate community structure at Canadian Oil Sands development is linked to concentration of bitumen-derived contaminants. Sci. Total Environ. 575:1005–13. doi:10.1016/j.scitotenv.2016.09.169.
  • Glozier, N. E., K. Pippy, L. Levesque, A. Ritcey, B. Armstrong, O. Tobin, C. A. Cooke, M. Conly, L. Dirk, C. Epp, et al. 2018. Surface water quality of the athabasca, peace and slave rivers and riverine waterbodies within the Peace-Athabasca Delta. Oil Sands Monitoring Program Technical Report Series No. 1.4, 64. ISBN: 978-1-4601-4152-6.
  • Godwin, C. M., R. M. Barclay, and J. E. G. Smits. 2019. Tree swallow (Tachycineta bicolor) nest success and nestling growth near oilsands mining operations in Northeastern Alberta. Can. J. Zool. 1–41. doi:10.1139/cjz-2018-0247.
  • Gong, W., A. P. Dastoor, V. S. Bouchet, S. Gong, P. A. Makar, M. D. Moran, B. Pabla, S. Menard, L.-P. Crevier, S. Cousineau, et al. 2006. Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmos. Res. 82 (1–2):248–75. doi:10.1016/j.atmosres.2005.10.012.
  • Gordon, M., S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O‘Brien, and M. Wolde. 2015. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations. Atmos. Meas. Tech. 8 (3745–3765):2015. doi:10.5194/amt-8-3745-2015.
  • Gordon, M., P. Makar, R. Staebler, J. Zhang, A. Akingunola, W. Gong, and S.-M. Li. 2018. A comparison of plume rise algorithms to stack plume measurements in the Athabasca Oil Sands. Atmos. Chem. Phys. 18:14695–714. doi:10.5194/acp-18-14695-2018.
  • Government of Canada, Canada. 2019a. National pollutant release inventory. Accessed March 22, 2019. https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html.
  • Government of Canada, Canada. 2019b. Canada’s air pollutant emissions inventory. Accessed March 22, 2019. https://open.canada.ca/data/en/dataset/fa1c88a8-bf78-4fcb-9c1e-2a5534b92131.
  • Graney, J. R., M. S. Landis, K. J. Puckett, W. B. Studabaker, E. S. Edgerton, A. H. Legge, and K. E. Percy. 2017. Differential accumulation of PAHs, elements, and Pb isotopes by five lichen species from the Athabasca Oil Sands Region in Alberta, Canada. Chemosphere 184:700–10. doi:10.1016/j.chemosphere.2017.06.036.
  • Hanha, S. R. 1988. Air quality model evaluation and uncertainty. J. Air Poll. Cont. Assoc. 38 (4):406–12. doi:10.1080/08940630.1988.10466390.
  • Harman, C., E. Farmen, and K. E. Tollefsen. 2010. Monitoring North Sea oil production discharges using passive sampling devices coupled with in vitro bioassay techniques. J. Environ. Monit. 12 (9):1699–708. doi:10.1039/C0EM00147C.
  • Harms, N. J., G. D. Fairhurst, G. R. Bortolotti, and J. E. G. Smits. 2010. Variation in immune function, body condition, and feather corticosterone in nestling Tree Swallows (Tachycineta bicolor) on reclaimed wetlands in the Athabasca oil sands, Alberta, Canada. Environ. Pollut. 158 (3):841–48. doi:10.1016/j.envpol.2009.09.025.
  • Harner, T., C. Rauert, D. Muir, J. Schuster, Y.-M. Hsu, L. Zhang, G. Marson, J. G. Watson, J. Ahad, S. Cho, et al. 2018. Air synthesis review on polycyclic aromatic compounds in the Oil Sands Region. Environ Rev 26 (4):430–68. doi:10.1139/er-2018-0039.
  • Hebert, C. 2019. The river runs through it: The Athabasca River delivers mercury to aquatic birds breeding far downstream. PLoS ONE 14 (4):e0206192 doi:10.1371/journal.pone.0206192.
  • Hebert, C., W. Nordstrom, and L. Shutt. 2010. Colonial waterbirds nesting on Egg Island, Lake athabasca, 2009. Can. Field-Naturalist 124:49–53. doi:10.22621/cfn.v124i1.1029.
  • Hebert, C. E., D. V. C. Weseloh, S. Macmillan, D. Campbell, and W. Nordstrom. 2011. Metals and polycyclic aromatic hydrocarbons in colonial waterbird eggs from Lake Athabasca and the Peace-Athabasca Delta, Canada. Environ. Toxicol. Chem. 30 (5):1178–83. doi:10.1002/etc.489.
  • Hersikorn, B. D., J. J. H. Ciborowski, and J. Smits. 2010. The effects of oil sands wetlands on wood frogs (Rana sylvatica). Toxicol. Environ. Chem. 92 (8):1513–27. doi:10.1080/02772240903471245.
  • Himanen, M., P. Prochazka, K. Hänninen, and A. Oikari. 2012. Phytotoxicity of low-weight carboxylic acids. Chemosphere 88 (4):426–31. doi:10.1016/j.chemosphere.2012.02.058.
  • Hsu, Y. M. 2013. Trends in passively-measured ozone, nitrogen dioxide and sulfur dioxide concentrations in the Athabasca Oil Sands Region of Alberta, Canada. Aerosol Air Qual. Res. 13:1448–63. doi:10.4209/aaqr.2012.08.0224.
  • Hsu, Y.-M., T. Harner, H. Li, and P. Fellin. 2015. PAH measurements in air in the Athabasca oil sands region. Environ. Sci. Technol. 49 (9):5584–92. doi:10.1021/acs.est.5b00178.
  • Jacques, D. R., and A. H. Legge. 2012. Ecological analogues for biomonitoring industrial sulfur emissions in the Athabasca Oil Sands Region, Alberta, Canada. Chapter 10. In Alberta Oil Sands: Energy, industry and the environment, ed. K. E. Percy, 219–41. Oxford, UK: Elsevier.
  • Jariyasopit, N., Y. Zhang, J. W. Martin, and T. Harner. 2018. Comparison of polycyclic aromatic compounds in air measured by conventional passive air samplers and passive dry deposition samplers and contributions from petcoke and oil sands ore. Atmos. Chem. Phys. 18:9161–71. doi:10.5194/acp-18-9161-2018.
  • Jautzy, J. J., J. M. Ahad, C. Gobeil, A. Smirnoff, B. D. Barst, and M. M. Savard. 2015. Isotopic evidence for oil sands petroleum coke in the Peace–Athabasca Delta. Environ. Sci. Technol. 49 (20):12062–70. doi:10.1021/acs.est.5b03232.
  • Jeffries, D. S., R. G. Semkin, J. J. Gibson, and I. Wong. 2010. Recently surveyed lakes in northern Manitoba and Saskatchewan, Canada: Characteristics and critical loads of acidity. J. Limnol. 69 (Suppl. 1):45–55. doi:10.4081/jlimnol.2010.s1.45.
  • Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. 2012. Accessed April 5, 2019. http://www.ec.gc.ca/Scitech/D0AF1423-351C-4CBC-A990-4ADA543E7181/COM1519_Final%20OS%20Plan_02.pdf.
  • JOSM, Canada. 2016. Joint oil sands monitoring program emissions inventory report. Accessed January 9, 2019. https://www.canada.ca/en/environment-climate-change/services/science-technology/publications/joint-oil-sands-monitoring-emissions-report.html.
  • Jung, K., and S. X. Chang. 2012. Four years of simulated N and S depositions did not cause N saturation in a mixedwood boreal forest ecosystem in the Oil Sands Region in Northern Alberta, Canada. For. Ecol. Manag. 280:62–70. doi:10.1016/j.foreco.2012.06.002.
  • Kang, E., M. J. Root, D. W. Toohey, and W. H. Brune. 2007. Introducing the concept of Potential Aerosol Mass (PAM). Atmos. Chem. Phys. 7:5727–44. doi:10.5194/acp-7-5727-2007.
  • Kelly, E. N., D. W. Schindler, P. V. Hodson, J. W. Short, R. Radmanovich, and C. C. Nielsen. 2010. Oil Sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proc. Natl. Acad. Sci. U.S.A. 107:16178–83. doi:10.1073/pnas.1008754107.
  • Kelly, E. N., J. W. Short, D. W. Schindler, P. V. Hodson, M. Ma, A. K. Kwan, and B. L. Fortin. 2009. Oil Sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proc. Natl. Acad. Sci. U.S.A. 106 (52):22346–51. doi:10.1073/pnas.0912050106.
  • Kerr, J. T., and M. Ostrovsky. 2003. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18 (6):299–305. doi:10.1016/S0169-5347(03)00071-5.
  • Keyte, I. J., R. M. Harrison, and G. Lammel. 2013. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review. Chem. Soc. Rev. 42 (24):9333–91. doi:10.1039/c3cs60147a.
  • Khare, P., N. Kumar, K. M. Kumari, and S. S. Srivastava. 1999. Atmospheric formic and acetic acids: An overview. Rev. Geophys. 37 (2):227–48. doi:10.1029/1998RG900005.
  • Kirk, J., D. Muir, C. Manzano, C. Cooke, J. Wiklund, A. Gleason, J. Summers, J. Smol, and J. Kurek. 2018. Atmospheric deposition to the Athabasca Oil Sands Region using snowpack measurements and dated lake sediment cores. Oil Sands Monitoring Program Technical Report Series No. 1.2, 43. ISBN 978-1-4601-4026-0.
  • Kirk, J. L., D. C. G. Muir, A. Gleason, X. Wang, G. Lawson, R. A. Frank, I. Lehnherr, and F. Wrona. 2014. Atmospheric deposition of mercury and methylmercury to landscapes and waterbodies of the Athabasca Oil Sands Region. Environ. Sci. Technol. 48 (13):7374–83. doi:10.1021/es500986r.
  • Knox, A., N. Mykhaylova, G. J. Evans, C. J. Lee, B. Kamey, and J. R. Brook. 2013. The expanding scope of air pollution monitoring can facilitate sustainable development. Sci. Total Environ. 448:189–96. doi:10.1016/j.scitotenv.2012.07.096.
  • Korosi, J. B., C. A. Cooke, D. C. Eickmeyer, L. E. Kimpe, and J. M. Blais. 2016. In-situ bitumen extraction associated with increased petrogenic polycyclic aromatic compounds in lake sediments from the Cold Lake heavy oil fields (Alberta, Canada). Environ. Pollut. 218:915–22. doi:10.1016/j.envpol.2016.08.032.
  • Kurek, J., J. L. Kirk, D. C. G. Muir, X. Wang, M. S. Evans, and J. P. Smol. 2013. Legacy of a half century of Athabasca Oil Sands development recorded by lake ecosystems. Proc. Natl. Acad. Sci. U.S.A. 110 (5):1761–66. doi:10.1073/pnas.1217675110.
  • Kwak, J. H., S. X. Chang, and M. A. Naeth. 2018. Eleven years of simulated deposition of nitrogen but not sulfur changed species composition and diversity in the herb stratum in a boreal forest in western Canada. For. Ecol. Manag. 412:1–8. doi:10.1016/j.foreco.2018.01.049.
  • Lambe, A. T., A. T. Ahern, L. R. Williams, J. G. Slowik, J. P. S. Wong, J. P. D. Abbatt, W. H. Brune, N. L. Ng, J. P. Wright, D. R. Croasdale, et al. 2011. Characterization of aerosol photooxidation flow reactors: Heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmos. Meas. Tech. 4:445–61. doi:10.5194/amt-4-445-2011.
  • Lambe, A. T., T. B. Onasch, D. R. Croasdale, J. P. Wright, A. T. Martin, J. P. Franklin, P. Massoli, J. H. Kroll, M. R. Canagaratna, W. H. Brune, et al. 2012. Transitions from functionalization to fragmentation reactions of laboratory Secondary Organic Aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ. Sci. Technol. 46 (10):5430–37. doi:10.1021/es300274t.
  • Landers, D. H., S. M. Simonich, D. Jaffe, L. Geiser, D. H. Campbell, A. Schwindt, C. Schreck, M. Kent, W. Hafner, H. E. Taylor, et al. 2010. The Western Airborne Contaminant Assessment Project (WACAP): An interdisciplinary evaluation of the impacts of airborne contaminants in western US national parks. Environ. Sci. Technol. 44 (3):855–59. doi:10.1021/es901866e.
  • Landis, M. S., W. B. Studabaker, J. P. Pancras, J. R. Graney, K. Puckett, E. M. White, and E. S. Edgerton. 2019. Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Sci. Total Environ. 654:1241–57. doi:10.1016/j.scitotenv.2018.11.131.
  • Lawrence, G. B. 2002. Persistent episodic acidification of streams linked to acid rain effects on soil. Atmos. Environ. 36 (10):1589–98. doi:10.1016/S1352-2310(02)00081-X.
  • Lee, K., M. Boufadel, B. Chen, J. Foght, P. Hodson, S. Swanson, and A. Venosa. 2015. Expert panel report on the behaviour and environmental impacts of crude oil released into aqueous environments. Ottawa, ON: Royal Society of Canada. ISBN: 978-1-928140-02-3.
  • Li, S.-H., A. Leithead, S. G. Moussa, J. Liggio, M. D. Moran, D. Wang, K. Hayden, A. Darlington, M. Gordon, R. Staebler, et al. 2017. Differences between measured and reported volatile organic compound emissions from oil sands facilities in Alberta, Canada. Proc. Natl. Acad. Sci. U.S.A. 114 (19):E3756–E3765. doi:10.1073/pnas.1617862114.
  • Liess, M., K. Foit, S. Knillmann, R. B. Schäfer, and H. D. Liess. 2016. Predicting the synergy of multiple stress effects. Sci. Rep. 6:32965. doi:10.1038/srep32965.
  • Liggio, J., S.-M. Li, K. Hayden, Y. M. Taha, C. Stroud, A. Darlington, B. D. Drollette, M. Gordon, P. Lee, P. Liu, et al. 2016. Oil sands operations as a large source of secondary organic aerosols. Nature 534 (7605):91–94. doi:10.1038/nature17646.
  • Liggio, J., S.-M. Li, R. Staebler, K. Hayden, A. Darlington, R. L. Mittermeier, J. O’Brien, R. McLaren, M. Wolde, D. Worthy, et al. 2019. Measurements indicate that CO2 emissions from Canadian Oil Sands are higher than estimates made using internationally recommended method. Nat. Commun. 10 (1):1863.
  • Liggio, J., C. Stroud, J. J. B. Wentzell, J. Zhang, J. Sommers, A. Darlington, P. Liu, S. G. Moussa, A. Leithead, K. Hayden, et al. 2017. Quantifying the primary emissions and photochemical formation of isocyanic acid (HNCO) downwind of oil sands operations. Environ. Sci. Technol. 51 (24):14462–71. doi:10.1021/acs.est.7b04346.
  • Lim, Y. B., Y. Tan, M. J. Perri, S. P. Seitzinger, and B. J. Turpin. 2010. Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 10 (6):10521–39. doi:10.5194/acp-10-10521-2010.
  • Lindenmayera, B., G. E. Likens, C. J. Krebs, and R. J. Hobbs. 2010. Improved probability of detection of ecological “surprises”. Proc. Natl. Acad. Sci. U.S.A. 107 (51):21957–62. doi:10.1073/pnas.1015696107.
  • Link, M. F., B. Friedman, R. Fulgham, P. Brophy, A. Galang, S. H. Jathar, P. Veres, J. M. Roberts, and D. K. Farmer. 2016. Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic acid (HNCO). Geophys. Res. Lett. 43 (8):4033–41. doi:10.1002/2016GL068207.
  • Lundstedt, S., P. A. White, C. L. Lemieux, K. D. Lynes, I. B. Lambert, L. Oberg, P. Haglund, and M. Tysklind. 2007. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36 (6):475–85. doi:10.1579/00447447(2007)36[475:SFATHO]2.0.CO;2.
  • Lynch, J. M. 1977. Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J. Appl. Bacteriol. 42 (1):81–87.
  • Majdi, H., and P. Kangas. 1997. Demography of fine roots in response to nutrient applications in a Norway spruce stand in southwestern Sweden. Ecoscience 4 (2):199–205. doi:10.1080/11956860.1997.11682396.
  • Makar, P. A., A. Akingunola, J. Aherne, A. S. Cole, Y.-A. Aklilu, J. Zhang, I. Wong, K. Hayden, S.-M. Li, J. Kirk, et al. 2018. Estimates of exceedances of critical loads for acidifying deposition in Alberta and Saskatchewan. Atmos. Chem. Phys. 18:9897–927. doi:10.5194/acp-18-9897-2018.
  • Makar, P. A., W. Gong, C. Hogrefe, Y. Zhang, G. Curci, R. Zabkar, J. Milbrandt, U. Im, A. Balzarini, R. Baro, et al. 2015b. Feedbacks between air pollution and weather, part 2: Effects on chemistry. Atmos. Environ. 115:499–526. doi:10.1016/j.atmosenv.2014.10.021.
  • Makar, P. A., W. Gong, J. Milbrandt, C. Hogrefe, Y. Zhang, G. Curci, R. Zabkar, U. Im, A. Balzarini, R. Baro, et al. 2015a. Feedbacks between air pollution and weather, part 1: Effects on weather. Atmos. Environ. 115:442–69. doi:10.1016/j.atmosenv.2014.12.003.
  • Manzano, C. A., D. Muir, J. Kirk, C. Teixeira, M. Siu, X. Wang, J. P. Charland, D. Schindler, and E. Kelly. 2016. Temporal variation in the deposition of polycyclic aromatic compounds in snow in the Athabasca Oil Sands area of Alberta. Environ. Monit. Assess. 188 (9):542. doi:10.1007/s10661-016-5500-3.
  • Marentette, J. R., K. Sarty, A. M. Cowie, R. A. Frank, L. M. Hewitt, J. L. Parrot, and C. J. Martyniuk. 2017. Molecular responses of Walleye (Sander vitreus) embryos to naphthenic acid fraction components extracted from fresh oil sands process-affected water. Aquat. Toxicol. 182:11–19. doi:10.1016/j.aquatox.2016.11.003.
  • McLinden. 2019. personal communication.
  • McLinden, C. A., V. E. Fioletov, K. F. Boersma, N. A. A. Krotkov, C. Sioris, P. Veefkind, and K. Yang. 2012. Air quality over the Canadian oil sands: A first assessment using satellite observations. Geophys. Res. Lett. 39 (4):4804. doi:10.1029/2011GL050273.
  • McMaster, M., J. Parrott, A. Bartlett, F. Gagne, M. Evans, G. Tetreault, H. Keith, and J. Gee. 2018. Aquatic ecosystem health assessment of the Athabasca River mainstream and tributaries using fish health and fish and invertebrate toxicological testing. Oil Sands Monitoring Program Technical Report Series No. 1.8, 76. ISBN 978-1-4601-4032-1.
  • McMaster, M. E., L. M. Hewitt, and J. L. Parrott. 2006. A decade of research on the environmental impacts of pulp and paper mill effluents in Canada: Field studies and mechanistic research. J. Toxicol. Environ. Health B Crit. Rev. 9:319–39. doi:10.1080/15287390500195752.
  • Menezes-Blackburn, D., C. Paredes, H. Zhang, C. D. Giles, T. Darch, M. Stutter, T. S. George, C. Shand, D. Lumsdon, P. Cooper, et al. 2016. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils. Environ. Sci. Technol. 50 (21):11521–31. doi:10.1021/acs.est.6b03017.
  • Metcalfe, C. 2012. Persistent organic pollutants in the marine food chain. UNU.edu, February 23. Accessed March 22, 2019. https://unu.edu/publications/articles/persistent-organic-pollutants-in-the-marine-food-chain.html.
  • Moller, P., R. S. Wils, D. M. Jensen, M. H. G. Andersen, and M. Roursgaard. 2018. Telomere dynamics and cellular senescence: An emerging field in environmental and occupational toxicology. Crit. Rev. Toxicol. 48 (9):761–88. doi:10.1080/10408444.2018.1538201.
  • Moran, M. D., S. Ménard, D. Talbot, P. Huang, P. A. Makar, W. Gong, H. Landry, S. Gravel, S. Gong, L.-P. Crevier, et al. 2010. Particulate-matter forecasting with GEM-MACH15, a new Canadian air-quality forecast model. In Air pollution modelling and its application xx, ed. D. G. Steyn and S. T. Rao, 289–92. Dordrecht: Springer.
  • Muir, D., X. Wang, J. Kirk, A. Gleason, C. Teixeira, S. Backus, L. Bradley, C. Mihele, and G. Poole. 2012. Depositional patterns of inorganics and polyaromatic compounds in precipitation in the Athabasca Oil Sands area of Alberta, Canada. Proceedings of 33rd Annual SETAC Meeting, Long Beach, California, November 11–15.
  • Mullan-Boudreau, G., L. J. Davies, K. Devito, D. G. Froese, T. Noernberg, R. Pelletier, and W. Shotyk. 2017. Reconstructing Past Rates of Atmospheric Dust Deposition in the Athabasca Bituminous Sands Region Using Peat Cores from Bogs. Land Degrad. Dev. 28:8. doi:10.1002/ldr.2782.
  • Mundy, L. J., J. C. Bilodeau, D. M. Schock, P. J. Thomas, J. M. Blais, and B. D. Pauli. 2018. Using wood frog (Lithobates sylvaticus) tadpoles and semipermeable membrane devices to monitor polycyclic aromatic compounds in boreal wetlands in the oil sands region of northern Alberta, Canada. Chemosphere 214:148–57. doi:10.1016/j.chemosphere.2018.09.034.
  • Munkittrick, K. M., C. J. Arens, R. B. Lowell, and G. P. Kaminski. 2009. A review of potential methods of determining critical effects size for designing environmental monitoring programs. Environ. Toxicol. Chem. 28 (7):1361–71. doi:10.1897/08-376.1.
  • Munkittrick, K. R., and T. J. Arciszewski. 2017. Using normal ranges for interpreting results of monitoring and tiering to guide future work: A case study of increasing polycyclic aromatic compounds in lake sediments from the Cold Lake oil sands (Alberta, Canada) described in Korosi et al. (2016). Environ. Pollut. 231 (Pt 1):1215–22. doi:10.1016/j.envpol.2017.07.070.
  • Murray, C. A., C. J. Whitfield, and S. A. Watmough. 2017. Uncertainty-based terrestrial critical loads of nutrient nitrogen in northern Saskatchewan, Canada. Boreal Environ. Res. 22:231–44.
  • My WildAlberta. 2017. Gull and tern egg consumption advisory. Accessed April 5, 2019. https://mywildalberta.ca/hunting/safety-procedures/gull-and-tern-egg-consumption-advisory.aspx.
  • Natural Resources Canada, Canada. 2017. Crude oil facts. Accessed March 22, 2019. https://www.nrcan.gc.ca/energy/facts/crude-oil/20064.
  • NEG-ECP. 2001. Critical load of sulphur and nitrogen assessment and mapping protocol for upland forests. Halifax, Canada: New England Governors and eastern Canadian Premiers Environment Task Group, Acid Rain Action Plan.
  • Nilsson, J., and P. Grennfelt. 1988. Critical loads for sulphur and nitrogen. Report from a workshop held at Skokloster, Sweden, March 19–24.
  • Norton, S. B., S. M. Cormier, and G. W. Suter. 2015. Ecological causal assessment. Boca Raton, Florida, USA: CRC Press.
  • Ouimet, R. 2005. Cartographie des Charges Critiques d’Acidité des Forêts: Deuxième Approximation. Gouvernement du Québec Ministère des Ressources naturelles et de la Faune. Direction de la recherche forestière. Rapport interne n° 487, 48.
  • Pace, T. G. 2005. Methodology to estimate the transportable fraction (TF) of fugitive dust emissions for regional and urban scale air quality analyses. Accessed March 15, 2019. https://www.nrc.gov/docs/ML1321/ML13213A386.pdf.
  • Parajulee, A., and F. Wania. 2014. Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model. Proc. Natl. Acad. Sci. U.S.A. 111 (9):3344–49. doi:10.1037/pnas.1319780111.
  • Parrott, J. L., S. M. Backus, A. I. Borgmann, and M. Swyripa. 1999. The use of semipermeable membrane devices to concentrate chemicals in oil refinery effluent on the Mackenzie River. Arctic 52:125–38. doi:10.14430/arctic917.
  • Parrott, J. L., J. R. Marentette, L. M. Hewitt, M. E. McMaster, P. L. Gillis, W. P. Norwood, J. L. Kirk, K. M. Peru, J. V. Headley, Z. Wang, et al. 2018. Meltwater from snow contaminated by oil sands emissions is toxic to larval fish, but not spring river water. Sci. Tot. Environ. 625:264–74. doi:10.1016/j.scitotenv.2017.12.284.
  • Paruelo, J. M., M. Texeira, L. Staiano, M. Mastrángelo, L. Amdan, and F. Gallego. 2016. An integrative index of Ecosystem Services provision based on remotely sensed data. Ecol. Indic. 71:145–54. doi:10.1016/j.ecolind.2016.06.054.
  • Percy, K. E. 2012. Alberta oil sands: Energy, industry and the environment. Oxford, UK: Elsevier.
  • Percy, K. E., D. G. Maynard, and A. H. Legge. 2012. Applying the forest health approach to monitoring boreal ecosystems in the Athabasca Oil Sands Region. In Alberta Oil Sands: Energy, industry and the environment, ed. K. E. Percy, 193–218. Oxford, UK: Elsevier.
  • Pilote, M., C. André, P. Turcotte, F. Gagné, and C. Gagnon. 2018. Metal bioaccumulation and biomarkers of effects in caged mussels exposed in the Athabasca oil sands area. Sci. Total. Environ. 610-611:377–90. doi:10.1016/j.scitotenv.2017.08.023.
  • Pollet, I., and L. I. Bendell-Young. 2000. Amphibians as indicators of wetland quality in wetlands formed from oil sands effluent. Environ. Toxicol. Chem. 19 (10):2589–97. doi:10.1002/etc.5620191027.
  • Qiu, X., I. Cheng, F. Yang, E. Horb, L. Zhang, and T. Harner. 2018. Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca Oil Sands Region – Development using current knowledge and evaluation with passive sampling and air dispersion modelling data. Atmos. Chem. Phys. 18:3457–67. doi:10.5194/acp-18-3457-2018.
  • Radeva, K., R. Nedkov, and A. Dancheva. 2018. Application of remote sensing data for a wetland ecosystem services assessment in the area of Negovan village. Paper presented at SPIE Remote Sensing Conference, Berlin, Germany, September 21–24.
  • Rappaport, S. M., and M. T. Smith. 2010. Environment and disease risks. Science 330 (6003):460–61. doi:10.1126/science.1192603.
  • Rauert, C., A. Kananathalingham, and T. Harner. 2017. Characterization and modeling of polycyclic aromatic compound uptake into spruce tree wood. Environ. Sci. Technol. 51 (9):5287–95. doi:10.1021/acs.est.7b01297.
  • Roberts, J. M., P. R. Veres, A. K. Cochran, C. Warneke, I. R. Burling, R. J. Yokelson, B. Lerner, J. B. Gilman, W. C. Kuster, R. Fall, et al. 2011. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc. Natl. Acad. Sci. U.S.A. 108 (22):8966–71. doi:10.1073/pnas.1103352108.
  • Roberts, J. M., P. R. Veres, T. C. Vandenboer, C. Warneke, M. Graus, E. J. Williams, B. Lefer, C. A. Brock, R. Bahreini, F. Öztürk, et al. 2014. New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations. J. Geophys. Res. 119:1060–72. doi:10.1002/2013JD019931.
  • The Royal Society of Canada. 2010. Environmental and health impacts of Canada’s Oil Sands industry. Accessed March 22, 2019. https://rscsrc.ca/sites/default/files/RSC%20Oil%20Sands%20Panel%20Main%20Report%20Oct%202012.pdf.
  • Russell, M., A. Hakami, P. A. Makar, A. Akingunola, J. Zhang, M. D. Moran, and Q. Zheng. 2018. An EVALUATION OF THE EFfiCACY OF VERY HIGH RESOLUTION AIR-QUALITY MODELLING OVER THE Athabasca Oil Sands Region, Alberta, Canada. Atmos. Chem. Phys. 18, in review. doi:10.5194/acp-2018-967.
  • Rydzynski, K, World Health Organization & International Programme for Chemical Safety 1997. Acrylic acid. World Health Organization. http://www.who.int/iris/handle/10665/41955.
  • Schuster, J. K., T. Harner, K. Su, C. Mihele, and A. Eng. 2015. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds. Environ. Sci. Technol. 49 (5):2991–98. doi:10.1021/es505684e.
  • Schuster, J. K., K. Su, A. Eng, T. Harner, A. Wnorowski, and J.-P. Charland. 2019. Temporal and spatial trends of polycyclic aromatic compounds in air across the Athabasca oil sands region reflect inputs from open pit mining and forest fires. Environ. Sci. Technol. 6 (3):178–83. doi:10.1021/acs.estlett.9b00010.
  • Schüürmann, G., R. U. Ebert, I. Tluczkiewicz, S. E. Escher, and R. Kühne. 2016. Inhalation threshold of toxicological concern (TTC) - Structural alerts discriminate high from low repeated-dose inhalation toxicity. Environ. Int. 88:123–32. doi:10.1016/j.envint.2015.12.005.
  • Shephard, M. W., C. A. McLinden, K. E. Cady-Pereira, M. Luo, S. G. Moussa, A. Leithead, J. Liggio, R. M. Staebler, A. Akingunola, P. Makar, et al. 2015. Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: Validation and model evaluation. Atmos. Meas. Tech. 8:5189–211. doi:10.5194/amt-8-5189-2015.
  • Simmons, D. B. D., and J. P. Sherry. 2016. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit. Comp. Biochem. Physiol. D. 19:181–89. doi:10.1016/j.cbd.2016.03/003.
  • Simpson, I. J., N. J. Blake, B. Barletta, G. S. Diskin, H. E. Fuelberg, K. Gorham, L. G. Huey, S. Meinardi, F. S. Rowland, S. A. Vay, et al. 2010. Characterization of trace gases measured over alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2. Atmos. Chem. Phys. 10:11931–54. doi:10.5194/acp-10-11931-2010.
  • Sioris, C., C. McLinden, J. Dawson, B. Brisco, L. Fu, and T. Nunifu. 2018. AEP-ECCC workshop on current and emerging methods for satellite monitoring of the oil sands. Oil Sands Monitoring Program Technical Report Series No. 4, 19. ISBN: 978-1-4601-4195-3.
  • Smith, V. H., G. D. Tilman, and J. C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100 (1–3):179–96. doi:10.1016/S0269-7491(99)00091-3.
  • Song, Y. W., H. R. Wang, Y. X. Cao, F. Li, C. H. Cui, and L. X. Zhou. 2016. Inhibition of low molecular organic acids on the activity of acidithiobacillus species and its effect on the removal of heavy metals from contaminated soil. Huanjing Kexue/Environ. Sci. 37 (5):1960–67. doi:10.13227/j.hjkx.2016.05.046.
  • Staples, C. A., S. R. Murphy, J. E. McLaughlin, H. W. Leung, T. C. Cascieri, and C. H. Farr. 2000. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere 40 (1):29–38. doi:10.1016/S0045-6535(99)00228-3.
  • Stavrakou, T., J. F. Müller, J. Peeters, A. Razavi, L. Clarisse, C. Clerbaux, P. F. Coheur, D. Hurtmans, M. De Mazière, C. Vigouroux, et al. 2012. Satellite evidence for a large source of formic acid from boreal and tropical forests. Nat. Geosci. 5 (1):26–30. doi:10.1038/ngeo1354.
  • Stroud, C. A., P. A. Makar, J. Zhang, M. D. Moran, A. Akingunola, S.-M. Li, A. Leithead, K. Hayden, and M. Siu. 2018. Improving air quality model predictions of organic species using measurement-derived organic gaseous and particle emissions in a petrochemical-dominated region. Atmos. Chem. Phys. 18:13531–45. doi:10.5194/acp-18-13531-2018.
  • Studabaker, W. B., S. Krupa, R. K. M. Jayanty and J. H. Raymer . 2012. Measurement of polynuclear aromatic hydrocarbons (PAHs) in epiphytic lichens for receptor modeling I the Athabasca oil sands region (AOSR): A pilot study. In Alberta Oil Sands: Energy, industry and the environment, ed. K. E. Percy, 391–426. Oxford, UK: Elsevier.
  • Summers, J. C., J. Kurek, J. L. Kirk, D. C. Muir, X. Wang, J. A. Wiklund, C. A. Cooke, M. S. Evans, and S. P. Smol. 2016. Recent warming, rather than industrial emissions of bioavailable nutrients, is the dominant driver of lake primary production shifts across the Athabasca Oil Sands Region. PLoS ONE 11 (5):e0153987. doi:10.1371/journal.pone.0153987.
  • Sverdrup, L. E., T. Källqvist, A. E. Kelley, C. S. Fürst, and S. B. Hagen. 2001. Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments. Chemosphere 45 (4–5):653–58. doi:10.1016/S0045-6535(01)00044-3.
  • Thuens, S., C. Blodau, F. Wania, and M. Radke. 2014. Comparison of atmospheric travel distances of several PAHs calculated by two fate and transport models (the tool and ELPOS) with experimental values derived from a peat bog transect. Atmosphere 5 (2):324–41. doi:10.3390/atmos5020324.
  • Tokarek, T. W., C. A. Odame-Ankrah, J. A. Huo, R. McLaren, A. K. Y. Lee, M. G. Adam, M. D. Willis, J. P. D. Abbatt, C. Mihele, A. Darlington, et al. 2018. Principal component analysis of summertime ground site measurements in the Athabasca oil sands: Sources of IVOCs. Atmos. Chem. Phys. 18:17819–1784. doi:10.5194/acp-18-17819-2018.
  • United States Environmental Protection Agency, U.S.A. 2014. SPECIATE data browser. Accessed March 22, 2019. https://cfpub.epa.gov/speciate/.
  • United States Environmental Protection Agency, U.S.A. 2017. Toxicity forecasting. Accessed March 25, 2019. https://www.epa.gov/chemical-research/toxicity-forecasting.
  • United States Environmental Protection Agency, U.S.A. 2019a. National recommended water quality criteria – Aquatic life criteria table. Accessed January 9, 2019. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table.
  • United States Environmental Protection Agency, U.S.A. 2019b. Toxic and priority pollutants under the clean water act. Accessed April 5, 2019. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act.
  • Varma, V., A. Catherin, and M. Sankaran. 2018. Effects of increased N and P availability on biomass allocation and root carbohydrate reserves differ between N-fixing and non-N-fixing savanna tree seedlings. Ecol. Evol. 8 (16):8467–76. doi:10.1002/ece3.4289.\.
  • Venkatram, A., and P. Karamchandani. 1986. Source-receptor relationships, a look at acid deposition modeling. Environ. Sci. Technol. 20 (11):1084–91. doi:10.1021/es00153a002.
  • Villeneuve, D. L., D. Crump, N. Garcia-Reyero, M. Hecker, T. H. Hutchinson, C. A. LaLone, B. Landesmann, T. Lettieri, S. Munn, M. Nepelska, et al. 2014. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 142 (2):312–20. doi:10.1093/toxsci/kfu199.
  • Wang, X., J. C. Chow, S. D. Kohl, K. E. Percy, A. H. Legge, and J. G. Watson. 2015. Characterization of PM2.5 and PM10 fugitive dust source profiles in the Athabasca Oil Sands Region. J. Air Waste Manag. Assoc. 65 (12):1421–33. doi:10.1080/10962247.2015.1100693.
  • Weinhold, B. 2011. Alberta’s Oil Sands: Hard evidence, missing data, new promises. Environ. Health Perspect. 119 (3):A126–A131. doi:10.1289/ehp.119-a126.
  • Wentzell, J. J. B., J. Liggio, S. M. Li, A. Vlasenko, R. Staebler, G. Lu, M. J. Poitras, T. Chan, and J. R. Brook. 2013. Measurements of gas phase acids in diesel exhaust: A relevant source of HNCO?. Environ. Sci. Technol. 47 (14):7663–71. doi:10.1021/es401127j.
  • Whaley, C. H., E. Galarneau, P. A. Makar, A. Akingunola, W. Gong, and S. Gravel. 2018b. GEM-MACH-PAH (rev2488): A new high-resolution chemical transport model for North American polycyclic aromatic hydrocarbons and benzene. Geosci. Model Dev. 11 (7):2609–32. doi:10.5194/gmd-11-2609-2018.
  • Whitfield, C. J., and S. A. Watmough. 2015. Acid deposition in the Athabasca Oil Sands Region: A policy perspective. Environ. Monit. Assess. 187 (12):771. doi:10.1007/s10661-015-4979-3.
  • Wild, C. P. 2012. The exposome: From concept to utility. Int. J. Epidemiol. 41 (1):24–32. doi:10.1093/ije/dyr236.
  • Willis, C. E., J. L. Kirk, V. L. St, L. I. Lehnherr, P. A. Ariya, and R. B. Rangel-Alvarado. 2018. Sources of methylmercury to snowpacks of the Alberta Oil Sands Region: A study of in situ methylation and particulates. Environ. Sci. Technol. 52 (2):531–40. doi:10.1021/acs.est.7b04096.
  • Wnorowski, A. 2017. Characterization of the ambient air content of parent polycyclic aromatic hydrocarbons in the Fort McKay region (Canada). Chemosphere 174:371–79. doi:10.1016/j.chemosphere.2017.01.114.
  • Wnorowski, A., and J. P. Charland. 2017. Profiling quinones in ambient air samples collected from the Athabasca region (Canada). Chemosphere 189:55–66. doi:10.1016/j.chemosphere.2017.09.003.
  • Wood Buffalo Environmental Association, Canada. 2018. Reports and publications. Accessed April 5, 2019. https://wbea.org/deposition/effects-monitoring/.
  • Wood Buffalo Environmental Association, Canada. 2019. Forest health monitoring. Accessed March 22, 2019. https://wbea.org/deposition/effects-monitoring/.
  • Woodward-Massey, R., Y. M. Taha, S. G. Moussa, and H. D. Osthoff. 2014. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air. Atmos. Environ. 98:693–703. doi:10.1016/j.atmosenv.2014.09.014.
  • Wren, S. N., J. Liggio, Y. Han, K. Hayden, G. Lu, C. M. Mihele, R. L. Mittermeier, C. Stroud, J. J. B. Wentzell, and J. R. Brook. 2018. Elucidating real-world vehicle emission factors from mobile measurements over a large metropolitan region: A focus on isocyanic acid, hydrogen cyanide, and black carbon. Atmos. Chem. Phys. 18 (23):16979–1700. doi:10.5194/acp-18-16979-2018.
  • Wright, L. P., L. Zhang, I. Cheng, J. Aherne, and G. R. Wentworth. 2018. Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems - a review. Aerosol Air Qual. Res. 18:1953–92. doi:10.4209/aaqr.2018.03.0107.
  • Xing, Z., and K. Du. 2017. Particulate matter emissions over the oil sands regions in Alberta, Canada. Environ. Rev. 25 (4):432–43. doi:10.1139/er-2016-0112.
  • Yang, C., Z. Wang, Z. Yang, B. Hollebone, C. E. Brown, M. Landriault, and B. Fieldhouse. 2011. Chemical fingerprints of Alberta oil sands related petroleum products. Environ. Forensics 12:173–88. doi:10.1080/15275922.2011.574312.
  • Zergaw-Ayanu, T., C. Conrad, T. Nauss, M. Wegmann, and T. Koellner. 2012. Quantifying and mapping ecosystem services supplies and demands: A review of remote sensing applications. Environ. Sci. Technol. 46 (16):8529–41. doi:10.1021/es300157u.
  • Zhang, J., M. D. Moran, Q. Zheng, P. A. Makar, P. Baratzadeh, G. Marson, P. Liu, and S.-M. Li. 2018. Emissions preparation and analysis for multiscale air quality modelling over the athabasca oil sands region of Alberta, Canada. Atmos. Chem. Phys. 18:10459–81. doi:10.5194/acp-2017-1215.
  • Zhang, Y., W. Shotyk, C. Zaccone, T. Noernberg, R. Pelletier, B. Bicalho, D. G. Froese, L. Davies, and J. W. Martin. 2016. Airborne petcoke dust is a major source of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region. Environ. Sci. Technol. 50 (4):1711–20. doi:10.1021/acs.est.5b05092.
  • Zhao, R., A. K. Y. Lee, J. J. B. Wentzell, A. M. McDonald, D. Toom-Sauntry, W. R. Leaitch, R. L. Modini, A. L. Corrigan, L. M. Russell, K. J. Noone, et al. 2014a. Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air. Geophys. Res. Lett. 41:6962–69. doi:10.1002/2014GL061112.