6,876
Views
63
CrossRef citations to date
0
Altmetric
Review Articles

Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, satellite, and atmospheric models

ORCID Icon, ORCID Icon, , , , , , , , , , , , , ORCID Icon, & show all
Pages 1391-1414 | Received 06 Apr 2019, Accepted 22 Aug 2019, Published online: 15 Oct 2019

References

  • Ahangar, F. E., F. R. Freedman, and A. Venkatram. 2019. Using low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. Int. J. Environ. Res. Public Health 16 (7):1252. Multidisciplinary Digital Publishing Institute (MDPI). doi:10.3390/ijerph16071252.
  • Al-Hamdan, A. Z., R. N. Albashaireh, M. Z. Al-Hamdan, and W. L. Crosson. 2017. The association of remotely sensed outdoor fine particulate matter with cancer incidence of respiratory system in the USA. J. Environ. Sci. Heal. Part A 52 (6) Taylor & Francis:547–54. doi:10.1080/10934529.2017.1284432.
  • Al-Hamdan, A. Z., P. P. Preetha, R. N. Albashaireh, M. Z. Al-Hamdan, and W. L. Crosson. 2018b. Investigating the effects of environmental factors on autism spectrum disorder in the USA using remotely sensed data. Environ. Sci. Pollut. Res 25 (8) Springer Berlin Heidelberg:7924–36. doi:10.1007/s11356-017-1114-8.
  • Al-Hamdan, A. Z., P. P. Preetha, M. Z. Al-Hamdan, W. L. Crosson, and R. N. Albashaireh. 2018a. Reconnoitering the linkage between cardiovascular disease mortality and long-term exposures to outdoor environmental factors in the USA using remotely-sensed data. J. Environ. Sci. Heal. Part A Taylor & Francis, 1–10. March. doi:10.1080/10934529.2018.1445083.
  • Al-Hamdan, M. Z., W. L. Crosson, S. A. Economou, M. G. Estes, S. M. Estes, S. N. Hemmings, S. T. Kent, Puckett, M., Quattrochi, D.A., Rickman, D.L., Wade, G.M., and McClure, L.A. 2014. Environmental public health applications using remotely sensed data. Geocarto Int 29 (1) NIH Public Access: 85–98. doi: 10.1080/10106049.2012.715209
  • Al-Hamdan, M. Z., W. L. Crosson, A. S. Limaye, D. L. Rickman, D. A. Quattrochi, M. G. Estes, J. R. Qualters, Sinclair, A.H., Tolsma, D.D., Adeniyi, K.A. and Niskar, A.S. 2009. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: Potential use for environmental public health surveillance. J. Air Waste Manage. Assoc. 59 (7):865–81. doi:10.3155/1047-3289.59.7.865.
  • Allen, G., C. Sioutas, P. Koutrakis, R. Reiss, F. W. Lurmann, and P. T. Roberts. 1997. Evaluation of the TEOM® method for measurement of ambient particulate mass in urban areas. J. Air Waste Manag. Assoc. 47 (6):682–89. doi:10.1080/10473289.1997.10463923.
  • Anenberg, S. C., A. Belova, J. Brandt, N. Fann, S. Greco, S. Guttikunda, M. E. Heroux, Hurley, F., Krzyzanowski, M., Medina, S. and Miller, B. 2016. Survey of ambient air pollution health risk assessment tools. Risk Anal 36 (9):1718–36. doi:10.1111/risa.12540.
  • Bates, J. T., R. J. Weber, J. Abrams, V. Verma, T. Fang, M. Klein, M. J. Strickland, Sarnat, S.E., Chang, H.H., Mulholland, J.A. and Tolbert, P.E. 2015. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ. Sci. Technol. 49 (22):13605–12. doi:10.1021/acs.est.5b02967.
  • Bates, J. T., T. Fang, V. Verma, L. Zeng, R. J. Weber, P. E. Tolbert, J. Abrams, S. E. Sarnat, M. Klein, J. A. Mulholland, et al. 2019. Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53:4003–19. March. American Chemical Society, acs.est.8b03430. doi: 10.1021/acs.est.8b03430.
  • Beckerman, B. S., M. Jerrett, M. Serre, R. V. Martin, S.-J. Lee, A. van Donkelaar, Z. Ross, J. Su, and R. T. Burnett. 2013. A hybrid approach to estimating national scale spatiotemporal variability of PM 2.5 in the contiguous United States. Environ. Sci. Technol 47 (13) American Chemical Society:7233–41. doi:10.1021/es400039u.
  • Berrocal, V. J., A. E. Gelfand, and D. M. Holland. 2010a. A spatio-temporal downscaler for output from numerical models. J. Agric. Biol. Environ. Stat. 15 (2):176–97. doi:10.1007/s13253-009-0004-z.
  • Berrocal, V. J., A. E. Gelfand, and D. M. Holland. 2010b. A bivariate space-time downscaler under space and time misalignment. Ann. Appl. Stat. 4 (4):1942–75. http://arxiv.org/abs/1004.1147.
  • Berrocal, V. J., A. E. Gelfand, and D. M. Holland. 2012. Space-time data fusion under error in computer model output: An application to modeling air quality. Biometrics 68 (3):837–48. doi:10.1111/j.1541-0420.2011.01725.x.
  • Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, and M. G. Schultz. 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos 106 (D19) Wiley-Blackwell:23073–95. doi:10.1029/2001JD000807.
  • Bi, J., J. H. Belle, Y. Wang, A. I. Lyapustin, A. Wildani, and Y. Liu. 2019. Impacts of snow and cloud covers on satellite-derived PM2.5 levels. Remote Sens. Environ 221 (February) Elsevier:665–74. doi:10.1016/J.RSE.2018.12.002.
  • Bowe, B., Y. Xie, T. Li, Y. Yan, H. Xian, and Z. Al-Aly. 2018. Particulate matter air pollution and the risk of incident CKD and progression to ESRD. J. Am. Soc. Nephrol 29 (1) American Society of Nephrology:218–30. doi:10.1681/ASN.2017030253.
  • Brauer, M., M. Amann, R. T. Burnett, A. Cohen, F. Dentener, M. Ezzati, S. B. Henderson, Krzyzanowski, M., Martin, R.V., Van Dingenen, R. and Van Donkelaar, A. 2012. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol 46 (2):652–60. doi:10.1021/es2025752.
  • Brauer, M., G. Freedman, J. Frostad, A. van Donkelaar, R. V. Martin, F. Dentener, R. van Dingenen, Estep, K., Amini, H., Apte, J.S. and Balakrishnan, K. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol 50 (1):79–88. doi:10.1021/acs.est.5b03709.
  • Brock, C. A., N. L. Wagner, B. E. Anderson, A. R. Attwood, A. Beyersdorf, P. Campuzano-Jost, A. G. Carlton, Day, D.A., Diskin, G.S., Gordon, T.D. and Jimenez, J.L. 2016a. Aerosol optical properties in the Southeastern United States in summer - part 1: Hygroscopic growth. Atmos. Chem. Phys. 16 (8):4987–5007. doi:10.5194/acp-16-4987-2016.
  • Brock, C. A., N. L. Wagner, B. E. Anderson, A. Beyersdorf, P. Campuzano-Jost, D. A. Day, G. S. Diskin, Gordon, T.D., Jimenez, J.L., Lack, D.A. and Liao, J. 2016b. Aerosol optical properties in the Southeastern United States in summer - part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmos. Chem. Phys 16 (8):5009–19. doi:10.5194/acp-16-5009-2016.
  • Brook, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Hong, Y., Luepker, R.V., Mittleman, M.A. and Peters, A. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American heart association. Circulation 121 (21):2331–78. doi:10.1161/CIR.0b013e3181dbece1.
  • Buchard, V., C. A. Randles, A. M. Da Silva, A. Darmenov, P. R. Colarco, R. Govindaraju, R. Ferrare, Hair, J., Beyersdorf, A.J., Ziemba, L.D. and Yu, H. 2017. The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Clim. 30 (17):6851–72. doi:10.1175/JCLI-D-16-0613.1.
  • Burnett, R., H. Chen, M. Szyszkowicz, N. Fann, B. Hubbell, C. A. Pope, J. S. Apte, Brauer, M., Cohen, A., Weichenthal, S. and Coggins, J. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 115 (38) National Academy of Sciences:9592–97. doi:10.1073/pnas.1803222115.
  • Centers for Disease Control and Prevention. 2018. Home - CDC tracking network. https://ephtracking.cdc.gov/showHome.
  • Chen, J., J. Vaughan, J. Avise, S. O’Neill, and B. Lamb. 2008. Enhancement and evaluation of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. J. Geophys. Res. Atmos. 113 (14):1–20. doi:10.1029/2007JD009554.
  • Chow, J. C., P. Doraiswamy, J. G. Watson, L.-W. A. Chen, S. S. H. Ho, and D. A. Sodeman. 2008. Advances in integrated and continuous measurements for particle mass and chemical composition. J. Air Waste Manage. Assoc 58 (2) Taylor & Francis Group:141–63. doi:10.3155/1047-3289.58.2.141.
  • Chow, J. C., and J. G. Watson. 1998. Guideline on speciated particulate monitoring. https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdf.
  • Chu, Y., Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, M. Ren, et al. 2016. A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere (Basel) 7 (10) Multidisciplinary Digital Publishing Institute:129. doi:10.3390/atmos7100129.
  • Cohen, A. J., M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, Brunekreef, B., Dandona, L., Dandona, R. and Feigin, V. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 389 (10082) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license:1907–18. doi:10.1016/S0140-6736(17)30505-6.
  • Crumeyrolle, S., G. Chen, L. Ziemba, A. Beyersdorf, L. Thornhill, E. Winstead, R. H. Moore, M. A. Shook, C. Hudgins, and B. E. Anderson. 2014. Factors that influence surface PM2.5 values inferred from satellite observations: Perspective gained for the US Baltimore-Washington Metropolitan Area during DISCOVER-AQ. Atmos. Chem. Phys. 14 (4):2139–53. doi:10.5194/acp-14-2139-2014.
  • Di, Q., H. Amini, L. Shi, I. Kloog, R. Silvern, J. Kelly, M. B. Sabath, C. Choirat, P. Koutrakis, A. Lyapustin, et al. 2019. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environment International 130 (September) Pergamon:104909. doi:10.1016/J.ENVINT.2019.104909.
  • Di, Q., I. Kloog, P. Koutrakis, A. Lyapustin, Y. Wang, and J. Schwartz. 2016a. Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Environ. Sci. Technol 50 (9) American Chemical Society:4712–21. doi:10.1021/acs.est.5b06121.
  • Di, Q., P. Koutrakis, and J. Schwartz. 2016b. A hybrid prediction model for PM2.5 mass and components using a chemical transport model and land use regression. Atmos. Environ 131 (April) Pergamon:390–99. doi:10.1016/J.ATMOSENV.2016.02.002.
  • Diner, D. J., S. W. Boland, M. Brauer, C. Bruegge, K. A. Burke, R. Chipman, L. Di Girolamo, M. J. Garay, S. Hasheminassab, and E. Hyer. 2018. Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: From MISR to MAIA. J. Appl. Remote Sens 12 (04) International Society for Optics and Photonics:1. doi:10.1117/1.JRS.12.042603.
  • Dominici, F., R. D. Peng, M. L. Bell, L. Pham, A. McDermott, S. L. Zeger, and J. M. Samet. 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295 (10):1127–34. doi:10.1001/jama.295.10.1127.
  • Draxler, R. R., and G. D. Hess. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 47 (4):295–308.
  • Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff. 2004. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 38 (16):2495–509. doi:10.1016/j.atmosenv.2004.01.039.
  • EPA. 2012. Regulatory impact analysis for the final revisions to the national ambient air quality standards for particulate matter. Research Triangle Park, NC: Office of Air Quality Planning and Standards. https://www3.epa.gov/ttn/ecas/regdata/RIAs/finalria.pdf.
  • EPA. 2016. Technical information about fused air quality surface using downscaling tool: Metadata description. https://www.epa.gov/sites/production/files/2016-07/documents/data_fusion_meta_file_july_2016.pdf.
  • EPA. 2017. Profile of version 1 of the 2014 national emissions inventory. Accessed April 27, 2018. https://www.epa.gov/sites/production/files/2017-04/documents/2014neiv1_profile_final_april182017.pdf.
  • EPA. 2018a. Health and environmental effects of Particulate Matter (PM). Accessed April 27, 2018. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM.
  • EPA. 2018b. EPA airdata air quality monitors. Accessed March 10, 2019. https://www.epa.gov/outdoor-air-quality-data.
  • EPA. 2018c. Air quality modeling technical support document for the updated 2023 projected ozone design values. https://www.epa.gov/sites/production/files/2018-06/documents/aq_modelingtsd_updated_2023_modeling_o3_dvs.pdf.
  • EPA. 2018d. Modeling guidance for demonstrating attainment of air quality goals for ozone, PM2.5, and regional haze. Research Triangle Park, NC. https://www3.epa.gov/ttn/scram/guidance/guide/O3-PM-RH-Modeling_Guidance-2018.pdf.
  • EPA RSIG. 2019. Accessed March 10, 2019. https://www.epa.gov/hesc/remote-sensing-information-gateway.
  • European Committee for Standardization (CEN). 1998. Standard EN 12341. Air quality – determination of the PM10 fraction of suspended particulate matter – reference method and field test procedure to demonstrate reference equivalence of measurement methods. European Standard EN 12341.
  • Fang, T., V. Verma, J. T. Bates, J. Abrams, M. Klein, M. J. Strickland, S. E. Sarnat, H. H. Chang, J. A. Mulholland, P. E. Tolbert, et al. 2016. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: Contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 16 (6):3865–79. doi:10.5194/acp-16-3865-2016.
  • Fann, N., B. Alman, R. A. Broome, G. G. Morgan, F. H. Johnston, G. Pouliot, and A. G. Rappold. 2018. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ 610–611 (January) Elsevier:802–09. doi:10.1016/J.SCITOTENV.2017.08.024.
  • Ford, B., and C. L. Heald. 2013. Aerosol loading in the Southeastern United States: Reconciling surface and satellite observations. Atmos. Chem. Phys. 13 (18):9269–83. doi:10.5194/acp-13-9269-2013.
  • Ford, B., and C. L. Heald. 2016. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter. Atmos. Chem. Phys. 16 (5):3499–523. doi:10.5194/acp-16-3499-2016.
  • Forouzanfar, M. H., A. Afshin, L. T. Alexander, H. R. Anderson, Z. A. Bhutta, S. Biryukov, M. Brauer, Burnett, R., Casey, D., Coates, M.M. and Cohen, A. 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 388 (10053):1659–724. doi:10.1016/S0140-6736(16)31679-8.
  • Forouzanfar, M. H., L. Alexander, H. R. Anderson, V. F. Bachman, S. Biryukov, M. Brauer, R. Burnett, Cercy, K., Charlson, F.J. and Cohen, A.J. 2015. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet 386 (10010) Elsevier:2287–323. doi:10.1016/S0140-6736(15)00128-2.
  • Friberg, M. D., R. A. Kahn, H. A. Holmes, H. H. Chang, S. E. Sarnat, P. E. Tolbert, A. G. Russell, and J. A. Mulholland. 2017. Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties. Atmos. Environ 158 (2) Elsevier Ltd:36–50. doi:10.1016/j.atmosenv.2017.03.022.
  • Friberg, M. D., X. Zhai, H. A. Holmes, H. H. Chang, M. J. Strickland, S. E. Sarnat, P. E. Tolbert, A. G. Russell, and J. A. Mulholland. 2016. Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution. Environ. Sci. Technol 50 (7) American Chemical Society:3695–705. doi:10.1021/acs.est.5b05134.
  • Gakidou, E., A. Afshin, A. A. Abajobir, K. H. Abate, C. Abbafati, K. M. Abbas, F. Abd-Allah, Abdulle, A.M., Abera, S.F., Aboyans, V. and Abu-Raddad, L.J. 2017. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet (London, England) 390 (10100) Elsevier:1345–422. doi:10.1016/S0140-6736(17)32366-8.
  • Gan, R. W., B. Ford, W. Lassman, G. Pfister, A. Vaidyanathan, E. Fischer, J. Volckens, J. R. Pierce, and S. Magzamen. 2017. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. GeoHealth 1 (3) John Wiley & Sons, Ltd:122–36. doi:10.1002/2017GH000073.
  • Geng, G., Q. Zhang, R. V. Martin, A. van Donkelaar, H. Huo, H. Che, J. Lin, and K. He. 2015. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ 166 Elsevier Inc.:262–70. doi:10.1016/j.rse.2015.05.016.
  • Gupta, P., and S. A. Christopher. 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. a neural network approach. J. Geophys. Res. Atmos. 114 (20):1–14. doi:10.1029/2008JD011497.
  • Gupta, P., S. A. Christopher, J. Wang, R. Gehrig, Y. Lee, and N. Kumar. 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 40 (30):5880–92. doi:10.1016/j.atmosenv.2006.03.016.
  • Haikerwal, A., M. Akram, A. Del Monaco, K. Smith, M. R. Sim, M. Meyer, A. M. Tonkin, M. J. Abramson, and M. Dennekamp. 2015. Impact of fine Particulate Matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 4 (7):1–10. doi:10.1161/JAHA.114.001653.
  • HAQAST, N. 2019. NASA HEALTH AND AIR QUALITY APPLIED SCIENCES TEAM. Accessed March 10, 2019. https://haqast.org/.
  • Henderson, S. B., and F. H. Johnston. 2012. Measures of forest fire smoke exposure and their associations with respiratory health outcomes. Curr. Opin. Allergy Clin. Immunol. 12 (3):221–27. doi:10.1097/ACI.0b013e328353351f.
  • Hering, S., and G. Cass. 1999. The magnitude of bias in the measurement of PM2.5 arising from volatilization of particulate nitrate from teflon filters. J. Air Waste Manag. Assoc. 49 (6):725–33. doi:10.1080/10473289.1999.10463843.
  • Herron-Thorpe, F. L., G. H. Mount, L. K. Emmons, B. K. Lamb, S. H. Chung, and J. K. Vaughan. 2012. Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimilated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition. Atmos. Chem. Phys. 12 (12):5603–15. doi:10.5194/acp-12-5603-2012.
  • Hoek, G., R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, and J. D. Kaufman. 2013. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Heal. 12 (1):43. doi:10.1186/1476-069X-12-43.
  • Hoff, R. M., and S. A. Christopher. 2009. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manage. Assoc 59 (6) Taylor & Francis Group:645–75. doi:10.3155/1047-3289.59.6.645.
  • Hu, X., J. H. Belle, X. Meng, A. Wildani, L. A. Waller, M. J. Strickland, and Y. Liu. 2017. Estimating PM 2.5 concentrations in the conterminous United States using the random forest approach. Environ. Sci. Technol 51 (12) American Chemical Society:6936–44. doi:10.1021/acs.est.7b01210.
  • Hu, X., L. A. Waller, A. Lyapustin, Y. Wang, M. Z. Al-Hamdan, W. L. Crosson, M. G. Estes, S. M. Estes, D. A. Quattrochi, S. J. Puttaswamy, et al. 2014a. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ 140 (2014) Elsevier Inc.:220–32. doi:10.1016/j.rse.2013.08.032.
  • Hu, X., L. A. Waller, A. Lyapustin, Y. Wang, and Y. Liu. 2014b. 10-year spatial and temporal trends of PM2.5 concentrations in the Southeastern US estimated using high-resolution satellite data. Atmos. Chem. Phys. 14 (12):6301–14. doi:10.5194/acp-14-6301-2014.
  • Huang, R., X. Zhai, C. E. Ivey, M. D. Friberg, X. Hu, Y. Liu, Q. Di, J. Schwartz, J. A. Mulholland, and A. G. Russell. 2018. Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: Application over North Carolina, USA. Air Qual. Atmos. Heal. 11 (1):11–22. doi:10.1007/s11869-017-0511-y.
  • Huijnen, V., J. Williams, M. van Weele, T. van Noije, M. Krol, F. Dentener, A. Segers, S. Houweling, W. Peters, J. de Laat, et al. 2010. The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev. 3 (2):445–73. doi:10.5194/gmd-3-445-2010.
  • Ivey, C., H. Holmes, G. Shi, S. Balachandran, Y. Hu, and A. G. Russell. 2017. Development of PM 2.5 source profiles using a hybrid chemical transport-receptor modeling approach. Environ. Sci. Technol 51 (23) American Chemical Society:13788–96. doi:10.1021/acs.est.7b03781.
  • Ivey, C. E., H. A. Holmes, Y. T. Hu, J. A. Mulholland, and A. G. Russell. 2015. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model. Geosci. Model Dev. 8 (7):2153–65. doi:10.5194/gmd-8-2153-2015.
  • Jin, X., A. M. Fiore, K. Civerolo, J. Bi, Y. Liu, A. Van Donkelaar, R. Martin, M. Al-Hamdan, Y. Zhang, T. Z. Insaf, et al. 2019b. Comparison of multiple PM2.5 exposure products for estimating health benefits of emission controls over New York State, USA. Environ. Res. Lett 14:084023. June. IOP Publishing. doi:10.1088/1748-9326/ab2dcb.
  • Jin, X., A. M. Fiore, G. Curci, A. Lyapustin, K. Civerolo, M. Ku, A. van Donkelaar, and R. V. Martin. 2019a. Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter distributions from satellite-observed aerosol optical depth. Atmos. Chem. Phys. 19 (1):295–313. doi:10.5194/acp-19-295-2019.
  • Keller, J. P., and R. D. Peng. 2019. Error in estimating area‐level air pollution exposures for epidemiology. Environmetrics John Wiley & Sons, Ltd. e2573. May. doi:10.1002/env.2573.
  • Kelly, J. T., C. J. Jang, B. Timin, B. Gantt, A. Reff, Y. Zhu, S. Long, and A. Hanna. 2019. A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards. Atmos. Environ X 2 (April) Elsevier:100019. doi:10.1016/J.AEAOA.2019.100019.
  • Kim, Y. H., S. H. Warren, Q. T. Krantz, C. King, R. Jaskot, W. T. Preston, B. J. George, Hays, M.D., Landis, M.S., Higuchi, M. and DeMarini, D.M. 2018. Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: Implications for health effects from wildland fires. Environ. Health Perspect. 126 (01):017011. doi:10.1289/EHP2200.
  • Kioumourtzoglou, M.-A., E. Austin, P. Koutrakis, F. Dominici, J. Schwartz, and A. Zanobetti. 2015. PM2.5 and survival among older adults: Effect modification by particulate composition. HHS Public Access 26 (3):321–27. doi:10.1097/EDE.0000000000000269.
  • Klimont, Z., K. Kupiainen, C. Heyes, P. Purohit, J. Cofala, P. Rafaj, J. Borken-Kleefeld, and W. Schöpp. 2017. Supplement of global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17 (14):8681–723. doi:10.5194/acp-17-8681-2017.
  • Kloog, I., A. A. Chudnovsky, A. C. Just, F. Nordio, P. Koutrakis, B. A. Coull, A. Lyapustin, Y. Wang, and J. Schwartz. 2014. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across Northeastern USA using high resolution aerosol optical depth data. Atmos. Environ. 95:581–90. doi:10.1016/j.atmosenv.2014.07.014.
  • Koelemeijer, R. B. A., C. D. Homan, and J. Matthijsen. 2006. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 40 (27):5304–15. doi:10.1016/j.atmosenv.2006.04.044.
  • Kokhanovsky, A. A., F.-M. Breon, A. Cacciari, E. Carboni, D. Diner, W. Di Nicolantonio, R. G. Grainger, W. M. F. Grey, R. Höller, K.-H. Lee, et al. 2007. Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmos. Res 85 (3–4) Elsevier:372–94. doi:10.1016/J.ATMOSRES.2007.02.008.
  • Krewski, D., M. Jerrett, R. T. Burnett, R. Ma, E. Hughes, Y. Shi, M. C. Turner, Pope, C.A. III, Thurston, G., Calle, E.E. and Thun, M.J. 2009. Extended follow-up and spatial analysis of the American cancer society study linking particulate air pollution and mortality. Res. Rep. Health. Eff. Inst 140 (May):5–114; discussion 115-36. http://www.ncbi.nlm.nih.gov/pubmed/19627030.
  • Laden, F., L. M. Neas, D. W. Dockery, and J. Schwartz. 2000. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect 108 (10) National Institute of Environmental Health Science:941–47. doi:10.1289/ehp.00108941.
  • Larkin, N. K., S. M. O’Neill, R. Solomon, S. Raffuse, T. Strand, D. C. Sullivan, C. Krull, M. Rorig, J. Peterson, and S. A. Ferguson. 2009. The bluesky smoke modeling framework. Int. J. Wildl. Fire 18 (8):906–20. doi:10.1071/WF07086.
  • Larkin, N. K., S. M. Raffuse, and T. M. Strand. 2014. Wildland fire emissions, carbon, and climate: U.S. emissions inventories. For. Ecol. Manage 317 Elsevier B.V.:61–69. doi:10.1016/j.foreco.2013.09.012.
  • Lassman, W., B. Ford, R. W. Gan, G. Pfister, S. Magzamen, E. V. Fischer, and J. R. Pierce. 2017. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 1 (3) Wiley-Blackwell:106–21. doi:10.1002/2017GH000049.
  • Lee, C. J., R. V. Martin, D. K. Henze, M. Brauer, A. Cohen, and A. van Donkelaar. 2015. Response of global particulate-matter-related mortality to changes in local precursor emissions. Environ. Sci. Technol. 49 (7):4335–44. doi:10.1021/acs.est.5b00873.
  • Lee, M., I. Kloog, A. Chudnovsky, A. Lyapustin, Y. Wang, S. Melly, B. Coull, P. Koutrakis, and J. Schwartz. 2016. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003-2011. J. Expo. Sci. Environ. Epidemiol 26 (4) NIH Public Access:377–84. doi:10.1038/JES.2015.41.
  • Lennartson, E. M., J. Wang, J. Gu, L. Castro Garcia, C. Ge, M. Gao, M. Choi, P. E. Saide, G. R. Carmichael, J. Kim, et al. 2018. Diurnal variation of aerosol optical depth and PM2.5 in South Korea: A synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-chem model. Atmos. Chem. Phys. 18 (20):15125–44. doi:10.5194/acp-18-15125-2018.
  • Li, C., R. V. Martin, B. L. Boys, A. van Donkelaar, and S. Ruzzante. 2016. Evaluation and application of multi-decadal visibility data for trend analysis of atmospheric haze. Atmos. Chem. Phys. 16 (4):2435–57. doi:10.5194/acp-16-2435-2016.
  • Li, C., R. V. Martin, A. van Donkelaar, B. L. Boys, M. S. Hammer, J. W. Xu, E. A. Marais, A. Reff, M. Strum, D. A. Ridley, et al. 2017. Trends in chemical composition of global and regional population-weighted fine particulate matter estimated for 25 years. Environ. Sci. Technol. 51 (19):11185–95. doi:10.1021/acs.est.7b02530.
  • Li, J., B. E. Carlson, and A. A. Lacis. 2015. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ 102 (February) Pergamon:260–73. doi:10.1016/J.ATMOSENV.2014.12.010.
  • Lim, S. S., T. Vos, A. D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, M. A. AlMazroa, Amann, M., Anderson, H.R., Andrews, K.G. and Aryee, M. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 380 (9859):2224–60. doi:10.1016/S0140-6736(12)61766-8.
  • Lin, H., Y. Guo, Q. Di, Y. Zheng, P. Kowal, J. Xiao, T. Liu, Li, X., Zeng, W., Howard, S.W. and Nelson, E.J. 2017. Ambient PM 2.5 and stroke. Stroke 48 (5):1191–97. doi:10.1161/STROKEAHA.116.015739.
  • Liu, J. C., G. Pereira, S. A. Uhl, M. A. Bravo, and M. L. Bell. 2015. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 136 (January):120–32. doi:10.1016/j.envres.2014.10.015.
  • Liu, Y., M. Franklin, R. Kahn, and P. Koutrakis. 2007. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis Area: A comparison between MISR and MODIS. Remote Sens. Environ. 107 (1–2):33–44. doi:10.1016/j.rse.2006.05.022.
  • Liu, Y., C. J. Paciorek, and P. Koutrakis. 2009. Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 117 (6) National Institute of Environmental Health Science:886–92. doi:10.1289/ehp.0800123.
  • Liu, Y., J. A. Sarnat, V. Kilaru, D. J. Jacob, and P. Koutrakis. 2005. Estimating ground-level PM 2.5 in the Eastern United States using satellite remote sensing. Environ. Sci. Technol. 39 (9):3269–78. doi:10.1021/es049352m.
  • Loop, M. S., S. T. Kent, M. Z. Al-Hamdan, W. L. Crosson, S. M. Estes, M. G. Estes, D. A. Quattrochi, S. N. Hemmings, V. G. Wadley, and L. A. McClure. 2013. Fine particulate matter and incident cognitive impairment in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Edited by C. Oreja-Guevara. PLoS One 8 (9):e75001. doi:10.1371/journal.pone.0075001.
  • Loop, M. S., L. A. McClure, E. B. Levitan, M. Z. Al-Hamdan, W. L. Crosson, and M. M. Safford. 2018. Fine particulate matter and incident coronary heart disease in the REGARDS cohort. Am. Heart J 197 (March) Mosby:94–102. doi:10.1016/J.AHJ.2017.11.007.
  • Lynch, P., J. S. Reid, D. L. Westphal, J. Zhang, T. F. Hogan, E. J. Hyer, C. A. Curtis, D. A. Hegg, Y. Shi, J. R. Campbell, et al. 2016. An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geosci. Model Dev. 9 (4):1489–522. doi:10.5194/gmd-9-1489-2016.
  • Ma, Z., X. Hu, L. Huang, J. Bi, and Y. Liu. 2014. Estimating ground-level PM2.5 in China using satellite remote sensing. Environ. Sci. Technol. 48 (13):7436–44. doi:10.1021/es5009399.
  • Malley, C. S., J. C. I. Kuylenstierna, H. W. Vallack, D. K. Henze, H. Blencowe, and M. R. Ashmore. 2017. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. Environ. Int. 101 (April):173–82. doi:10.1016/j.envint.2017.01.023.
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill. 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res 99 (D1) Wiley-Blackwell:1347. doi:10.1029/93JD02916.
  • Marsha, A., and N. K. Larkin. 2019. A statistical model for predicting PM2.5 for the Western United States. J. Air Waste Manage. Assoc 1–15. doi:10.1080/10962247.2019.1640808.
  • McClure, C. D., and D. A. Jaffe. 2018. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. USA 115 (31) National Academy of Sciences:7901–06. doi:10.1073/pnas.1804353115.
  • McClure, L. A., M. S. Loop, W. Crosson, D. Kleindorfer, B. Kissela, and M. Al-Hamdan. 2017. Fine Particulate Matter (PM 2.5) and the risk of stroke in the REGARDS cohort. J. Stroke Cerebrovasc. Dis. 26 (8):1739–44. doi:10.1016/j.jstrokecerebrovasdis.2017.03.041.
  • McMillan, N. J., D. M. Holland, M. Morara, and J. Feng. 2010. Combining numerical model output and particulate data using bayesian space-time modeling. Environmetrics 21 (February) Wiley-Blackwell:48–65. doi:10.1002/env.984.
  • Menut, L., B. Bessagnet, A. Colette, and D. Khvorostiyanov. 2013. On the impact of the vertical resolution on chemistry-transport modelling. Atmos. Environ 67 (March) Pergamon:370–84. doi:10.1016/J.ATMOSENV.2012.11.026.
  • Mirabelli, M. C., A. Vaidyanathan, W. D. Flanders, X. Qin, and P. Garbe. 2016. Outdoor PM 2.5, ambient air temperature, and asthma symptoms in the past 14 days among adults with active asthma. Environ. Health Perspect. 124 (12):1882–90. doi:10.1289/EHP92.
  • Munoz-Alpizar, R., R. Pavlovic, M. Moran, J. Chen, S. Gravel, S. Henderson, S. Ménard, J. Racine, A. Duhamel, S. Gilbert, et al. 2017. Multi-year (2013–2016) PM2.5 wildfire pollution exposure over North America as determined from operational air quality forecasts. Atmosphere (Basel) 8 (12) Multidisciplinary Digital Publishing Institute:179. doi:10.3390/atmos8090179.
  • NASA. 2019. Applied Remote Sensing Training (ARSET). Accessed March 7, 2019. https://arset.gsfc.nasa.gov/.
  • Ni, L., -C.-C. Chuang, and L. Zuo. 2015. Fine particulate matter in acute exacerbation of COPD. Front. Physiol. 6 (October):294. doi:10.3389/fphys.2015.00294.
  • Noble, C. A., R. W. Vanderpool, T. M. Peters, F. M. Frank, D. B. Gemmill, and R. W. Wiener. 2010. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Technol. 34 (5):457–64. doi:10.1080/02786820121582.
  • Ouyang, W., B. Guo, G. Cai, Q. Li, S. Han, B. Liu, and X. Liu. 2015. The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Sci. Total Environ. 505 (February):306–14. doi:10.1016/j.scitotenv.2014.09.062.
  • Paciorek, C. J., Y. Liu, H. Moreno-Macias, and S. Kondragunta. 2008. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5. Environ. Sci. Technol. 42 (15):5800–06. doi:10.1021/es703181j.
  • Pennington, A. F., M. J. Strickland, M. Klein, X. Zhai, J. T. Bates, C. Drews-Botsch, C. Hansen, A. G. Russell, P. E. Tolbert, and L. A. Darrow. 2018. Exposure to mobile source air pollution in early-life and childhood asthma incidence. Epidemiology 29 (1):22–30. doi:10.1097/EDE.0000000000000754.
  • Pennington, A. F., M. J. Strickland, M. Klein, X. Zhai, A. G. Russell, C. Hansen, and L. A. Darrow. 2017. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy. J. Expo. Sci. Environ. Epidemiol. 27 (5):513–20. doi:10.1038/jes.2016.66.
  • Peters, A., D. W. Dockery, J. E. Muller, and M. A. Mittleman. 2001. Increase particulate air pollution and the triggering of myocardial infarction. Circulation 103 (23):2810–15. doi:10.1161/01.cir.99.21.2737.
  • Pope, C. A., III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287 (9) American Medical Association:1132. doi:10.1001/jama.287.9.1132.
  • Pope, C. A., and D. W. Dockery. 2006. Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manage. Assoc 56 (6) Taylor & Francis Group:709–42. doi:10.1080/10473289.2006.10464485.
  • Rappold, A. G., J. Reyes, G. Pouliot, W. E. Cascio, and D. Diaz-Sanchez. 2017. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol 51 (12) American Chemical Society:6674–82. doi:10.1021/acs.est.6b06200.
  • Rappold, A. G., S. L. Stone, W. E. Cascio, L. M. Neas, V. J. Kilaru, M. S. Carraway, J. J. Szykman, A. Ising, W. E. Cleve, J. T. Meredith, et al. 2011. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Enviromental Heal. Perpectives 119 (10):1415–20. doi:10.1289/ehp.1003206.
  • Reid, C. E., M. Brauer, F. H. Johnston, M. Jerrett, J. R. Balmes, and C. T. Elliott. 2016. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124 (9):1334–43. doi:10.1289/ehp.1409277.
  • Reid, C. E., M. Jerrett, M. L. Petersen, G. G. Pfister, P. E. Morefield, I. B. Tager, S. M. Raffuse, and J. R. Balmes. 2015. Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environ. Sci. Technol. 49 (6):3887–96. doi:10.1021/es505846r.
  • Remer, L. A., Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, -R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, et al. 2005. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 62 (4):947–73. doi:10.1175/JAS3385.1.
  • Rundel, C. W., E. M. Schliep, A. E. Gelfand, and D. M. Holland. 2015. A data fusion approach for spatial analysis of speciated PM 2.5 across time. Environmetrics 26 (8) John Wiley & Sons, Ltd:515–25. doi:10.1002/env.2369.
  • Sarmiento, E. J., J. X. Moore, L. A. McClure, R. Griffin, M. Z. Al-Hamdan, and H. E. Wang. 2018. Fine particulate matter pollution and risk of community-acquired sepsis. Int. J. Environ. Res. Public Health 15 (4). Multidisciplinary Digital Publishing Institute (MDPI). doi:10.3390/ijerph15040818.
  • Scheffe, R. D., M. Strum, S. B. Phillips, J. Thurman, A. Eyth, S. Fudge, M. Morris, T. Palma, and R. Cook. 2016. Hybrid modeling approach to estimate exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA). Environ. Sci. Technol. 50 (22):12356–64. doi:10.1021/acs.est.6b04752.
  • Schroeder, W., M. Ruminski, I. Csiszar, L. Giglio, E. Prins, C. Schmidt, and J. Morisette. 2008. Validation analyses of an operational fire monitoring product: The hazard mapping system. Int. J. Remote Sens 29 (20) Taylor & Francis:6059–66. doi:10.1080/01431160802235845.
  • Shaddick, G., M. L. Thomas, H. Amini, D. Broday, A. Cohen, J. Frostad, A. Green, S. Gumy, Y. Liu, R. V. Martin, et al. 2018a. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol 52 (16) American Chemical Society:9069–78. doi:10.1021/acs.est.8b02864.
  • Shaddick, G., M. L. Thomas, A. Green, M. Brauer, A. van Donkelaar, R. Burnett, H. H. Chang, Cohen, A., Van Dingenen, R., Dora, C. and Gumy, S. 2018b. Data integration model for air quality: A hierarchical approach to the global estimation of exposures to ambient air pollution. J. R. Stat. Soc. Ser. C Appl. Stat. 67 (1):231–53. doi:10.1111/rssc.12227.
  • Snider, G., C. L. Weagle, R. V. Martin, A. van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, et al. 2015. SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmos. Meas. Tech. 8 (1):505–21. doi:10.5194/amt-8-505-2015.
  • Snider, G. C., L. Weagle, K. K. Murdymootoo, A. Ring, Y. Ritchie, E. Stone, A. Walsh, C. Akoshile, N. X. Anh, R. Balasubramanian, et al. 2016. Variation in global chemical composition of PM2.5: Emerging results from SPARTAN. Atmos. Chem. Phys. 16 (15):9629–53. doi:10.5194/acp-16-9629-2016.
  • Solomon, P. A., D. Crumpler, J. B. Flanagan, R. K. M. Jayanty, E. E. Rickman, and C. E. McDade. 2014. U.S. national PM 2.5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air Waste Manage. Assoc 64 (12) Taylor & Francis:1410–38. doi:10.1080/10962247.2014.956904.
  • Spracklen, D. V., L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan, and A. L. Westerling. 2009. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the Western United States. J. Geophys. Res 114 (D20) Wiley-Blackwell:D20301. doi:10.1029/2008JD010966.
  • State of Global Air. 2018. Special report. Boston, MA. https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf.
  • Stefanidou, M., S. Athanaselis, and C. Spiliopoulou. 2008. Health impacts of fire smoke inhalation. Inhal. Toxicol. 20 (8):761–66. doi:10.1080/08958370801975311.
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan. 2015. Noaa’s hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12):2059–77. doi:10.1175/BAMS-D-14-00110.1.
  • Strosnider, H. M., H. H. Chang, L. A. Darrow, Y. Liu, A. Vaidyanathan, and M. J. Strickland. 2019. Age-specific associations of ozone and PM 2.5 with respiratory emergency department visits in the US. Am. J. Respir. Crit. Care Med. 199 (7):882–90. doi:10.1164/rccm.201806-1147OC.
  • Tian, Y., X. Xiang, Y. Wu, Y. Cao, J. Song, K. Sun, H. Liu, and Y. Hu. 2017. Fine particulate air pollution and first hospital admissions for ischemic stroke in Beijing, China. Sci. Rep. 7 (1):3897. doi:10.1038/s41598-017-04312-5.
  • Turpin, B. J., J. J. Huntzicker, and S. V. Hering. 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmos. Environ. 28 (19):3061–71. doi:10.1016/1352-2310(94)00133-6.
  • Vaidyanathan, A., S. Saha, A. M. Vicedo-Cabrera, A. Gasparrini, N. Abdurehman, R. Jordan, M. Hawkins, J. Hess, and A. Elixhauser. 2019. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc. Natl. Acad. Sci. USA 116 (12) National Academy of Sciences:5420–27. doi:10.1073/pnas.1806393116.
  • Van Dingenen, R., F. Dentener, M. Crippa, J. Leitao, E. Marmer, S. Rao, E. Solazzo, and L. Valentini. 2018. TM5-FASST: A global atmospheric source-receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmos. Chem. Phys. 18:16173–211. doi:10.5194/acp-18-16173-2018.
  • van Donkelaar, A., R. V. Martin, M. Brauer, and B. L. Boys. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 123 (2):135–43. doi:10.1289/ehp.1408646.
  • van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 50 (7):3762–72. doi:10.1021/acs.est.5b05833.
  • van Donkelaar, A., R. V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, and P. J. Villeneuve. 2010. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 118 (6):847–55. doi:10.1289/ehp.0901623.
  • van Donkelaar, A., R. V. Martin, C. Li, and R. T. Burnett. 2019. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol 53 (5) American Chemical Society:2595–611. doi:10.1021/acs.est.8b06392.
  • van Donkelaar, A., R. V. Martin, R. J. D. Spurr, E. Drury, L. A. Remer, R. C. Levy, and J. Wang. 2013. Optimal estimation for global ground-level fine particulate matter concentrations. J. Geophys. Res. Atmos. 118 (11):5621–36. doi:10.1002/jgrd.50479.
  • Vaughan, J., B. Lamb, C. Frei, R. Wilson, C. Bowman, C. Figueroa-Kaminsky, S. Otterson, Boyer, M., Mass, C., Albright, M. and Koenig, J. 2004. A numerical daily air quality forecast system for the Pacific Northwest. Bull. Am. Meteorol. Soc. 85 (4):549–60. doi:10.1175/BAMS-85-4-549.
  • Wang, J., and S. A. Christopher. 2003. Intercomparison between satellite-derived aerosol optical thickness and PM 2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 30 (21):2095. doi:10.1029/2003GL018174.
  • Wang, Y., X. Hu, H. Chang, L. Waller, J. Belle, and Y. Liu. 2018. A bayesian downscaler model to estimate daily PM2.5. Levels in the Continental US, August. doi:10.3390/ijerph15091999.
  • Weber, S. A., T. Z. Insaf, E. S. Hall, T. O. Talbot, and A. K. Huff. 2016. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan Area using hierarchical bayesian model estimates. Environ. Res 151 (November) Academic Press:399–409. doi:10.1016/J.ENVRES.2016.07.012.
  • Wettstein, Z. S., S. Hoshiko, J. Fahimi, R. J. Harrison, W. E. Cascio, and A. G. Rappold. 2018. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am. Heart Assoc. 7 (8):e007492. doi:10.1161/JAHA.117.007492.
  • Wu, J.-Z., -D.-D. Ge, L.-F. Zhou, L.-Y. Hou, Y. Zhou, and Q.-Y. Li. 2018. Effects of particulate matter on allergic respiratory diseases. Chronic Dis. Transl. Med. 4 (2):95–102. doi:10.1016/j.cdtm.2018.04.001.
  • Xiao, Q., H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu. 2016. Evaluation of VIIRS, GOCI, and MODIS collection 6 AOD retrievals against ground sunphotometer observations over East Asia. Atmos. Chem. Phys. 16 (3):1255–69. doi:10.5194/acp-16-1255-2016.
  • Xu, J.-W., R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Liu, Y., Ma, Z., Huang, L. and Wang, Y. 2015. Estimating ground-level PM2.5 in Eastern China using aerosol optical depth determined from the GOCI satellite instrument. Atmos. Chem. Phys. 15 (22):13133–44. doi:10.5194/acp-15-13133-2015.
  • Yang, A., N. A. H. Janssen, B. Brunekreef, F. R. Cassee, G. Hoek, and U. Gehring. 2016. Children’s respiratory health and oxidative potential of PM 2.5 : The PIAMA birth cohort study. Occup. Environ. Med. 73 (3):154–60. doi:10.1136/oemed-2015-103175.
  • Zeger, S. L., D. Thomas, F. Dominici, J. M. Samet, J. Schwartz, D. Dockery, and A. Cohen. 2000. Exposure measurement error in time-series studies of air pollution: Concepts and consequences. Environ. Health Perspect. 108 (5):419–26. doi:10.1289/ehp.00108419.
  • Zhai, X., A. G. Russell, P. Sampath, J. A. Mulholland, B.-U. Kim, Y. Kim, and D. D’Onofrio. 2016. Calibrating R-LINE model results with observational data to develop annual mobile source air pollutant fields at fine spatial resolution: Application in Atlanta. Atmos. Environ 147 (December) Pergamon:446–57. doi:10.1016/J.ATMOSENV.2016.10.015.
  • Zhang, G., X. Rui, and Y. Fan. 2018. critical review of methods to estimate PM2.5 concentrations within specified research region. ISPRS Int. J. Geo-Information 7 (9) Multidisciplinary Digital Publishing Institute:368. doi:10.3390/ijgi7090368.
  • Zhang, H., R. M. Hoff, and J. A. Engel-Cox. 2009. The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM 2.5 over the United States: A geographical comparison by U.S. environmental protection agency regions. J. Air Waste Manage. Assoc. 59 (11):1358–69. doi:10.3155/1047-3289.59.11.1358.
  • Ziemba, L. D., K. L. Thornhill, R. Ferrare, J. Barrick, A. J. Beyersdorf, G. Chen, S. N. Crumeyrolle, Hair, J., Hostetler, C., Hudgins, C. and Obland, M. 2013. Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity. Geophys. Res. Lett. 40 (2):417–22. doi:10.1029/2012GL054428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.