2,547
Views
17
CrossRef citations to date
0
Altmetric
Invited Review Paper

A perspective on the development of gas-phase chemical mechanisms for Eulerian air quality models

, , &
Pages 44-70 | Received 09 May 2019, Accepted 13 Nov 2019, Published online: 18 Dec 2019

References

  • Astitha, M., H. Luo, S. T. Rao, C. Hogrefe, R. Mathur, and N. Kumar. 2017. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States. Atmos. Environ. 164:102–16. doi:10.1016/j.atmosenv.2017.05.020.
  • Atkinson, R. 1990. Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. 24A:1–41. doi:10.1016/0960-1686(90)90438-S.
  • Atkinson, R. 1994. Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data, Monograph No. 2.
  • Atkinson, R. 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34:2063–101. doi:10.1016/S1352-2310(99)00460-4.
  • Atkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, and IUPAC Subcommittee. 2006. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – Gas phase reactions of organic species. Atmos. Chem. Phys. 6:3625–4055. doi: acp-6-/acp-6-3625-2006.
  • Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, M. J. Rossi, and J. Troe. 1997. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data. 26:521–1011. doi:10.1063/1.556011.
  • Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, and J. Troe. 1992. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data. 21:1125–568. doi:10.1063/1.555918.
  • Atkinson, R., and W. P. L. Carter. 1984. Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84:437–70. doi:10.1021/cr00063a002.
  • Aumont, B., S. Szopa, and S. Madronich. 2005. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: Development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 5:2497–517. doi:10.5194/acp-5-2497-2005.
  • Badia, A., and O. Jorba. 2015. Gas-phase evaluation of the online NMMB/BSC-CTM model over Europe for 2010 in the framework of the AQMEII-Phase2 project. Atmos. Environ. 115:657–69. doi:10.1016/j.atmosenv.2014.05.055.
  • Baklanov, A., U. S. Korsholm, R. Nuterman, A. Mahura, K. P. Nielsen, B. H. Sass, A. Rasmussen, A. Zakey, E. Kaas, A. Kurganskiy, et al. 2017. Enviro-HIRLAM online integrated meteorology–Chemistry modelling system: Strategy, methodology, developments and applications (v7.2). Geosci. Model Dev. 10:2971–99. doi:10.5194/gmd-10-2971-2017.
  • Baklanov, A., K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, et al. 2014. Online coupled regional meteorology chemistry models in Europe: Current status and prospects. Atmos. Chem. Phys. 14:317–98. doi:10.5194/acp-14-317-2014.
  • Barker, J. R., and D. M. Golden. 2003. Master equation analysis of pressure-dependent atmospheric reactions. Chem. Rev. 103:4577–92. doi:10.1021/cr020655d.
  • Bates, K. H., and D. J. Jacob. 2019. A new model mechanism for atmospheric oxidation of isoprene: Global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol. Atmos. Chem. Phys. 19:9613–40. doi:10.5194/acp-19-9613-2019.
  • Baulch, D. L., R. A. Cox, P. J. Crutzen, R. F. Hampson Jr., J. A. Kerr, J. Troe, and R. T. Watson. 1982. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement 1. CODATA Task Group on Chemical Kinetics. J. Phys. Chem. Ref. Data. 11:327–496. doi:10.1063/1.555664.
  • Baulch, D. L., R. A. Cox, R. F. Hampson Jr., J. A. Kerr, J. Troe, and R. T. Watson. 1980. Evaluated kinetic and photochemical data for atmospheric chemistry. J. Phys. Chem. Ref. Data. 9:295–471. doi:10.1063/1.555619.
  • Benson, S. W. 1976. Thermochemical kinetics: Methods for the estimation of thermochemical data and rate parameters. 2nd ed. New York: John Wiley & Sons.
  • Besemer, A. C., and H. Nieboer. 1985. The wall as a source of hydroxy radicals in smog chambers. Atmos. Environ. 19:507–13. doi:10.1016/0004-6981(85)90171-4.
  • Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, and M. G. Schult. 2001. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. 106:23073–95. doi:10.1029/2001JD000807.
  • Bloss, C., V. Wagner, A. Bonzanini, M. E. Jenkin, K. Wirtz, M. Martin-Reviejo, and M. J. Pilling. 2005a. Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environ- mental chamber data. Atmos. Chem. Phys. 5:623–39. doi:10.5194/acp-5-623-2005.
  • Bloss, C., V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee, D. E. Heard, K. Wirtz, M. Martin-Reviejo4, G. Rea, et al. 2005b. Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 5:641–64. doi:10.5194/acp-5-641-2005.
  • Bowman, F. M., and J. H. Seinfeld. 1994. Ozone productivity of atmospheric organics. J. Geophys. Res. 99:5309–24. doi:10.1029/93JD03400.
  • Burke, M. P., C. F. Goldsmith, S. J. Klippenstein, O. Welz, H. Huang, I. O. Antonov, J. D. Savee, D. L. Osborn, J. Zádor, C. A. Taatjes, et al. 2015. Multiscale informatics for low-temperature propane oxidation: Further complexities in studies of complex reactions. J. Phys. Chem. A. 119:7095–115. doi:10.1021/acs.jpca.5b01003.
  • Burkholder, J. B., S. P. Sander, J. Abbatt, J. R. Barker, R. E. Huie, C. E. Kolb, M. J. Kurylo, V. L. Orkin, D. M. Wilmouth, and P. H. Wine. 2015. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation No. 18. JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena. Accessed May 8, 2019. http://jpldataeval.jpl.nasa.gov.
  • Byun, D., and K. L. Schere. 2006. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59:51–77. doi:10.1115/1.2128636.
  • Cai, C., J. T. Kelly, J. C. Avise, A. P. Kaduwela, and W. R. Stockwell. 2011. Photochemical modeling in California with the SAPRC07C and SAPRC99 chemical mechanisms: Model intercomparison and response to emission reductions. J. Air Waste Manage. Assoc. 61:559–72. doi:10.3155/1047-3289.61.5.559.
  • Calvert, J. G., R. Atkinson, K. H. Becker, R. M. Kamens, J. H. Seinfeld, T. J. Wallington, and G. Yarwood. 2002. The mechanisms of atmospheric oxidation of aromatic hydrocarbons. Oxford, UK: Oxford University Press.
  • Calvert, J. G., R. Atkinson, J. A. Kerr, S. Madronich, G. K. Moortgat, T. J. Wallington, and G. Yarwood. 2000. The mechanisms of the atmospheric oxidation of the alkenes. Oxford, UK: Oxford University Press.
  • Calvert, J. G., R. G. Derwent, J. J. Orlando, G. S. Tyndall, and T. J. Wallington. 2008. Mechanisms of atmospheric oxidation of the alkanes. Oxford, UK: Oxford University Press, Oxford.
  • Calvert, J. G., A. Mellouki, J. J. Orlando, M. J. Pilling, and T. J. Wallington. 2011. The mechanisms of the atmospheric oxidation of the oxygenates. Oxford, UK: Oxford University Press.
  • Calvert, J. G., J. J. Orlando, W. R. Stockwell, and T. J. Wallington. 2015. The mechanisms of reactions influencing atmospheric ozone. Oxford, UK: Oxford University Press.
  • Calvert, J. G., and J. N. Pitts. 1966. Photochemistry. New York: Wiley.
  • Calvert, J. G., and W. R. Stockwell. 1983. Deviations from the O3-NO-NO2 photostationary state in tropospheric chemistry. Can. J. Chem. 61:983–92. doi:10.1139/v83-174.
  • Carlton, A., C. Wiedinmyer, and J. Kroll. 2009. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 9:4987–5005. doi:10.5194/acp-9-4987-2009.
  • Carter, W. P. L. 1990. A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24A:481–518. doi:10.1016/0960-1686(90)90005-8.
  • Carter, W. P. L. 1994. Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. Assoc. 44:881–99. doi:10.1080/1073161X.1994.10467290.
  • Carter, W. P. L. 1995. Computer modeling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds. Atmos. Environ. 29:2513–27. doi:10.1016/1352-2310(95)00150-W.
  • Carter, W. P. L. 2000. Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment. Final Report to California Air Resources Board Contract No. 92-329, and 95-308, California Environmental Protection Agency, Air Resources Board, Research Division, Sacramento, CA, USA. Accessed May 8, 2019. http://www.cert.ucr.edu/~carter/absts.htm#saprc99.
  • Carter, W. P. L. 2010a. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 44:5324–35. doi:10.1016/j.atmosenv.2010.01.026.
  • Carter, W. P. L. 2010b. Development of a condensed SAPRC-07 chemical mechanism. Atmos. Environ. 44:5336–45. doi:10.1016/j.atmosenv.2010.01.024.
  • Carter, W. P. L. 2016. Preliminary documentation of the SAPRC16 mechanism. Accessed May 8, 2019. http://www.cert.ucr.edu/~carter/SAPRC/16/S16doc.pdf.
  • Carter, W. P. L. 2019. Description of the SAPRC-16 mechanism generation system for the atmospheric reactions of VOCs in the presence of NOx. Gateway to the SAPRC-16 mechanism. Accessed September 19, 2019. http://mechgen.cert.ucr.edu/.
  • Carter, W. P. L., R. Atkinson, A. M. Winer, and J. N. Pitts Jr. 1981. Evidence for chamber dependent radical sources: Impact on kinetic computer models for air pollution. Int. J. Chem. Kinet. 13:735–40. doi:10.1002/(ISSN)1097-4601.
  • Carter, W. P. L., and G. Heo. 2013. Development of revised SAPRC aromatics mechanisms. Atmos. Environ. 77:404–14. doi:10.1016/j.atmosenv.2013.05.021.
  • Carter, W. P. L., and F. W. Lurmann. 1991. Evaluation of a detailed gas phase atmospheric reaction mechanism using environmental chamber data. Atmos. Environ. 25:2771–806. doi:10.1016/0960-1686(91)90206-M.
  • Collett, R. S., and K. Oduyemi. 1997. Air quality modelling: A technical review of mathematical approaches. Meteorol. Appl. 4:235–46. doi:10.1017/S1350482797000455.
  • de Gouw, J., and J. L. Jimenez. 2009. Organic aerosols in the Earth’s atmosphere. Environ. Sci. Technol. 43:7614–18. doi:10.1021/es9006004.
  • Demerjian, K. L., J. A. Kerr, and J. G. Calvert. 1974. The mechanism of photochemical smog formation. Adv. Environ. Sci. Technol. 4:1–262.
  • Derwent, R. 2017. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. J. Air Waste Manage. Assoc. 67:789–96. doi:10.1080/10962247.2017.1292969.
  • Derwent, R. G., M. E. Jenkin, N. R. Passant, and M. J. Pilling. 2007. Reactivity-based strategies for photochemical ozone control in Europe. Environ. Sci. Policy 10:445–53. doi:10.1016/j.envsci.2007.01.005.
  • Derwent, R. G., M. E. Jenkin, M. J. Pilling, W. P. L. Carter, and A. Kaduwela. 2010a. Reactivity scales as comparative tools for chemical mechanisms. J. Air Waste Manage. Assoc. 60:914–24. doi:10.3155/1047-3289.60.8.914.
  • Derwent, R. G., M. E. Jenkin, and S. M. Saunders. 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ. 30:181–99. doi:10.1016/1352-2310(95)00303-G.
  • Derwent, R. G., M. E. Jenkin, S. M. Saunders, and M. J. Pilling. 2001. Characterization of the reactivities of volatile organic compounds using a master chemical mechanism. J. Air Waste Manage. Assoc. 51:699–707. doi:10.1080/10473289.2001.10464297.
  • Derwent, R. G., M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells, and N. R. Passant. 2010b. Secondary organic aerosol formation from a large number of reactive man-made organic compounds. Sci. Total Environ. 408:3374–81. doi:10.1016/j.scitotenv.2010.04.013.
  • Derwent, R. G., C. S. Witham, S. R. Utembe, M. E. Jenkin, and N. R. Passant. 2010c. Ozone in Central England: The impact of 20 years of precursor emission controls in Europe. Environ. Sci. Policy. 13:195–204. doi:10.1016/j.envsci.2010.02.001.
  • Dimitriades, B., and M. Dodge (Eds.). 1983. Proceedings of the empirical kinetics modeling approach (EKMA) validation workshop. EPA Report EPA-600/9-83-014, Environmental Sciences Research Lab, Research Triangle Park, NC, USA.
  • Dodge, M. C. 1989. A comparison of three photochemical oxidant mechanisms. J. Geophys. Res. 94:5121–36. doi:10.1029/JD094iD04p05121.
  • Dodge, M. C. 2000. Chemical oxidant mechanisms for air quality modeling: Critical review. Atmos. Environ. 34:2103–30. doi:10.1016/S1352-2310(99)00461-6.
  • Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40:2635–43. doi:10.1021/es052297c.
  • Ebel, A., R. Friedrich, and H. Rodhe, Eds. 1997. Transport and chemical transformation of pollutants in the troposphere, vol. 7, tropospheric modelling and emission estimation. New York: Springer Verlag.
  • Eder, B., and S. Yu. 2006. A performance evaluation of the 2004 release of models-3 CMAQ. Atmos. Environ. 40:4811–24. doi:10.1016/j.atmosenv.2005.08.045.
  • Emery, C., Z. Liu, A. G. Russell, M. T. Odman, G. Yarwood, and N. Kumar. 2017. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manage. Assoc. 67:582–98. doi:10.1080/10962247.2016.1265027.
  • Emmons, L. K., S. Walters, P. G. Hess, J.-F. Lamarque, G. G. Pfister, D. Fillmore, C. Granier, A. Guenther, D. Kinnison, T. Laepple, et al. 2010. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci. Model Dev. 3:43–67. doi:10.5194/gmd-3-43-2010.
  • Finlayson, B. J., J. N. Pitts Jr., and H. Akimoto. 1972. Production of vibrationally excited OH in chemiluminescent ozone-olefin reactions. Chem. Phys. Letters. 12:495–98. doi:10.1016/0009-2614(72)90016-4.
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr, eds. 1986. Chapter 6. Environmental chambers. In Atmospheric chemistry: Fundamental and experimental techniques, 330–402. New York: John Wiley & Sons.
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr. 2000. Chemistry of the upper and lower atmosphere: Theory, experiments and applications. New York: Academic Press.
  • Flemming, J., V. Huijnen, J. Arteta, P. Bechtold, A. Beljaars, A.-M. Blechschmidt, M. Diamantakis, R. J. Engelen, A. Gaudel, A. Inness, et al. 2015. Tropospheric chemistry in the integrated forecasting system of ECMWF. Geosci. Model Dev. 8:975–1003. doi:10.5194/gmd-8-975-2015.
  • Fuentes, J. D., M. Lerdau, R. Atkinson, D. Baldocchi, J. W. Botteneheim, P. Ciccioli, B. Lamb, C. Geron, L. Gu, A. Guenther, et al. 2000. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull. Amer. Meteor. Soc. 81:1537–75. doi:10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2.
  • Fujita, E. M., D. E. Campbell, W. R. Stockwell, E. Saunders, R. Fitzgerald, and R. Perea. 2016. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. J. Air Waste Manage. Assoc. 66:201–14. doi:10.1080/10962247.2015.1106991.
  • Gao, D., W. R. Stockwell, and J. B. Milford. 1995. First order sensitivity and uncertainty analysis for a regional scale gas-phase chemical mechanism. J. Geophys. Res. 100:23153–66. doi:10.1029/95JD02704.
  • Gao, D., W. R. Stockwell, and J. B. Milford. 1996. Global uncertainty analysis of a regional scale gas-phase chemical mechanism. J. Geophys. Res. 101:9107–19. doi:10.1029/96JD00060.
  • Geiger, H., I. Barnes, K. H. Becker, B. Bohn, T. Brauers, B. Donner, H.-P. Dorn, M. Elend, C. M. F. Dinis, D. Grossmann, et al. 2002. Chemical mechanism development: Laboratory studies and model applications. J. Atmos. Chem. 42:323–57. doi:10.1023/A:1015708517705.
  • Geiger, H., I. Barnes, I. Bejan, T. Benter, and M. Spittler. 2003. The tropospheric degradation of isoprene: An updated module for the regional atmospheric chemistry mechanism. Atmos. Environ. 37:1503–19. doi:10.1016/S1352-2310(02)01047-6.
  • GEOS-Chem. 2019. Accessed May 8, 2019. http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_chemistry_mechanisms.
  • Gery, M. W., G. Z. Whitten, and J. P. Killus. 1988. Development and testing of the CBM-1V for urban and regional modeling. Rep. EPA/600/3-88/OI2, U.S. Environ. Prot. Agency, Research Triangle Park, N.C., USA.
  • Gery, M. W., G. Z. Whitten, J. P. Killus, and M. C. Dodge. 1989. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 94:12925–56. doi:10.1029/JD094iD10p12925.
  • Goliff, W. S., W. R. Stockwell, and C. V. Lawson. 2013. The regional atmospheric chemistry mechanism, version 2. Atmos. Environ. 68:174–85. doi:10.1016/j.atmosenv.2012.11.038.
  • Grell, G. A., S. Emeis, W. R. Stockwell, T. Schoenemeyer, R. Forkel, J. Michalakes, R. Knoche, and W. Seidl. 2000. Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmos. Environ. 34:1435–53. doi:10.1016/S1352-2310(99)00402-1.
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder. 2005. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39:6957–75. doi:10.1016/j.atmosenv.2005.04.027.
  • Griffin, R. J., D. Dabdub, and J. H. Seinfeld. 2002. Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. J. Geophys. Res. 107:4342. doi:10.1029/2001JD000541.
  • Gross, A., K. V. Mikkelsen, and W. R. Stockwell. 2001a. A phase-space method for arbitrary bi-molecular gas-phase reactions: Theoretical description. Int. J. Quantum Chem. 84:479–92. doi:10.1002/(ISSN)1097-461X.
  • Gross, A., K. V. Mikkelsen, and W. R. Stockwell. 2001b. A phase-space method for arbitrary bi-molecular gas-phase reactions: Application to the CH3CHO + HO and CH3OOH + HO reactions. Int. J. Quantum Chem. 84:493–512. doi:10.1002/(ISSN)1097-461X.
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. Palmer, and C. Geron. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys. 6:3181–210. doi:10.5194/acp-6-3181-2006.
  • Haagen-Smit, A. J. 1952. Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem. 44:1342–46. doi:10.1021/ie50510a045.
  • Hallquist, M., J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, et al. 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 9:5155–236. doi:10.5194/acp-9-5155–2009.
  • Henderson, B. H., F. Akhtar, H. O. T. Pye, S. L. Napelenok, and W. T. Hutzell. 2014. A database and tool for boundary conditions for regional air quality modeling: Description and evaluation. Geosci. Model Dev. 7:339–60. doi:10.5194/gmd-7-339-2014.
  • Henrot, A. J., T. Stanelle, S. Schroeder, C. Siengenthaler, D. Taraborrelli, and M. G. Schultz. 2017. Implementation of the biogenic emission model MEGAN into the ECHAM6-HAMMOZ chemistry climate model. Basic results and sensitivity tests. Geosci. Model Dev. 10:903–26. doi:10.5194/gmd-10-903-2017.
  • Heymann, M. 2010. Lumping, testing, tuning: The invention of an artificial chemistry in atmospheric transport modeling. Stud. Hist. Philos. M. P. 41:218–32. doi:10.1016/j.shpsb.2010.07.002.
  • Hidy, M. G. 2019. Atmospheric chemistry in a box or a bag. Atmosphere 10:401. doi:10.3390/atmos10070401.
  • Hinneburg, D., E. Renner, and R. Wolke. 2009. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony. Env. Sci. Pollut Res. 16:25–35. doi:10.1007/s11356-008-0081-5.
  • Hodzic, A., J. L. Jimenez, S. Madronich, M. R. Canagaratna, P. F. DeCarlo, L. Kleinman, and J. Fast. 2010b. Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmos. Chem. Phys. 10:5491–514. doi:10.5194/acp-10-5491-2010.
  • Hodzic, A., J. L. Jimenez, A. S. H. Prévôt, S. Szidat, J. D. Fast, and S. Madronich. 2010a. Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City? Atmos. Chem. Phys. 10:10997–1016. doi:10.5194/acp-10-10997-2010.
  • Horowitz, L. W. 2003. A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res. 108:4784. doi:10.1029/2002JD002853.
  • Horowitz, L. W., J. Liang, G. M. Gardner, and D. J. Jacob. 1998. Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry. J. Geophys. Res. 103:13451–76. doi:10.1029/97JD03142.
  • Inness, A., F. Baier, A. Benedetti, I. Bouarar, S. Chabrillat, H. Clark, C. Clerbaux, P. Coheur, R. J. Engelen, Q. Errera, et al., the MACC team. 2013. The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys. 13:4073–109. doi: 10.5194/acp-13-4073-2013.
  • Inness, A., A.-M. Blechschmidt, I. Bouarar, S. Chabrillat, M. Crepulja, R. J. Engelen, H. Eskes, J. Flemming1, A. Gaudel, F. Hendrick, et al. 2015. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s composition-IFS. Atmos. Chem. Phys. 15:5275–303. doi:10.5194/acp-15-5275-2015.
  • IUPAC. 2019. Accessed May 8, 2019. http:iupac.pole-ether.fr.
  • Jacob, D., and R. Podzun. 1997. Sensitivity studies with the regional climate model REMO. Meteorl. Atmos. Phys. 63:119–29. doi:10.1007/BF01025368.
  • Jacobson, M. Z. 1999. Fundamentals of atmospheric modeling. 2nd ed. Cambridge, UK: Cambridge University Press.
  • Jang, M., and R. M. Kamens. 2001. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Envir. Sci. Technol. 35:3626–39.
  • Jeffries, H., D. Fox, and R. Kamens. 1976. Outdoor smog chamber studies: Light effects relative to indoor chambers. Envir. Sci. Technol. 10:1006–11. doi:10.1021/es60121a016.
  • Jeffries, H. E., R. M. Kamens, and K. Sexton. 2013. Early history and rationale for outdoor chamber work at the University of North Carolina. Environ. Chem. 10:349–64. doi:10.1071/EN13901.
  • Jenkin, M. E., S. M. Saunders, and M. J. Pilling. 1997. The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ. 31:81–104. doi:10.1016/S1352-2310(96)00105-7.
  • Jenkin, M. E., S. M. Saunders, V. Wagner, and M. J. Pilling. 2003. Protocol for the development of the master chemical mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 3:181–93. doi:10.5194/acp-3-181-2003.
  • Jenkin, M. E., L. A. Watson, S. R. Utembe, and D. E. Shallcross. 2008. A common representative intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development. Atmos. Environ. 42:7185–95. doi:10.1016/j.atmosenv.2008.07.028.
  • Jenkin, M. E., K. P. Wyche, C. J. Evans, T. Carr, P. S. Monks, M. R. Alfarra, M. H. Barley, G. B. McFiggans, J. C. Young, and A. R. Rickard. 2012. Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene. Atmos. Chem. Phys. 12:5275–308. doi:10.5194/acp-12-5275-2012.
  • Jenkin, M. E., J. C. Young, and A. R. Rickard. 2015. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 15:11433–59. doi:10.5194/acp-15-11433-2015.
  • Johnson, D., M. E. Jenkin, K. Wirtz, and M. Martin-Reviejo. 2004. Simulating the formation of secondary organic aerosol from the photooxidation of toluene. Environ. Chem. 1:150–65. doi:10.1071/EN04069.
  • Kaduwela, A., D. Luecken, W. Carter, and R. Derwent. 2015. New directions: Atmospheric chemical mechanisms for the future. Atmos. Environ. 122:609–10. doi:10.1016/j.atmosenv.2015.10.031.
  • Khosrawi, F., O. Kirner, G. Stiller, M. Höpfner, M. L. Santee, S. Kellmann, and P. Braesicke. 2018. EMAC simulations vs. satellite observations. Atmos. Chem. Phys. 18:8873–92. doi:10.5194/acp-18-8873-2018.
  • Kim, Y., F. Couvidat, K. Sartelet, and C. Seigneur. 2011. Comparison of different gas-phase mechanisms and aerosol modules for simulating particulate matter formation. J. Air Waste Manage. Assoc. 61:1218–26. doi:10.1080/10473289.2011.603999.
  • Kim, Y. P., and J. H. Seinfeld. 1995. Atmospheric gas–Aerosol equilibrium III. Thermodynamics of crustal elements Ca2+; K+; and Mg2+. Aerosol Sci Technol 22:93–110. doi:10.1080/02786829408959730.
  • Kim, Y. P., J. H. Seinfeld, and P. Saxena. 1993a. Atmospheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci Technol 19:157–81. doi:10.1080/02786829308959628.
  • Kim, Y. P., J. H. Seinfeld, and P. Saxena. 1993b. Atmospheric gas-aerosol equilibrium II. Analysis of common approximations and activity coefficient calculation methods. Aerosol Sci Technol 19:182–98. doi:10.1080/02786829308959629.
  • Kinnison, D. E., G. P. Brasseur, S. Walters, R. R. Garcia, D. R. Marsh, F. Sassi, V. L. Harvey, C. E. Randall, L. Emmons, J. F. Lamarque, et al. 2007. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. 112:D03303. doi:10.1029/2008JD010739.
  • Knote, C., P. Tuccella, G. Curci, L. Emmons, J. J. Orlando, S. Madronich, R. Baró, P. Jiménez-Guerrero, D. Luecken, C. Hogrefe, et al. 2015. Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison. Atmos. Environ. 115:553–68. doi:10.1016/j.atmosenv.2014.11.066.
  • Kushta, J., M. Astitha, S. Solomos, and G. Kallos. 2013. Chemical weather forecasting using the online fully integrated modeling system RAMS/ICLAMS – Comparison with the offline approach. EGU general assembly 2013. Geophys. Res. Abstr. 15:EGU2013–5573.
  • Lafore, J. P., J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron, C. Fischer, P. Héreil, P. Mascart, V. Masson, et al. 1998. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys. 16:90–109. doi:10.1007/s00585-997-0090-6.
  • Leach, A. R., and V. J. Gillet. 2007. An introduction to chemoinformatics. Revised ed. New York: Springer.
  • Lee-Taylor, J., S. Madronich, B. Aumont, A. Baker, M. Camredon, A. Hodzic, G. S. Tyndall, E. Apel, and R. A. Zaveri. 2011. Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume. Atmos. Chem. Phys. 11:13219–41. doi:10.5194/acp-11-13219-2011.
  • Leighton, P. A. 1961. Photochemistry of air pollution. New York: Academic Press.
  • Lelieveld, J., P. J. Crutzen, V. Ramanathan, M. O. Andreae, C. A. M. Brenninkmeijer, T. Campos, G. R. Cass, R. R. Dickerson, H. Fischer, J. A. de Gouw, et al. 2001. The Indian ocean experiment: Widespread air pollution from South and Southeast Asia. Science 291:1031–36. doi:10.1126/science.1057103.
  • Leone, J. A., and J. H. Seinfeld. 1985. Comparative analysis of chemical reaction mechanisms for photochemical smog. Atmos. Environ. 19:437–64. doi:10.1016/0004-6981(85)90166-0.
  • Lewis, J. M. 2005. Roots of ensemble forecasting. Mon. Wea. Rev. 133:1865–85. doi:10.1175/MWR2949.1.
  • Lin, Y.-H., Z. Zhang, K. S. Docherty, H. Zhang, S. H. Budisulistiorini, C. L. Rubitschun, S. L. Shaw, E. M. Knipping, E. S. Edgerton, T. E. Kleindienst, et al. 2012. Isoprene epoxydiols as precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol. 46:250–58. doi:10.1021/es202554c.
  • Lind, J. A., A. L. Lazrus, and G. L. Kok. 1987. Aqueous phase oxidation of sulfur(IV) by hydrogen peroxide, methylhydroperoxide, and peroxyacetic acid. J. Geophys. Res. Atmos. 92:4171–77. doi:10.1029/JD092iD04p04171.
  • Madronich, S., and J. G. Calvert. 1990. The NCAR master mechanism of the gas phase chemistry—Version 2.0. NCAR/TN-333+SRT, National Center for Atmospheric Research, Boulder Colorado, USA.
  • Makar, P. A., W. R. Stockwell, and S. M. Li. 1996. Gas-phase chemistry mechanisms compression strategies: Treatment of reactants. Atmos. Environ. 30:831–42. doi:10.1016/1352-2310(95)00357-6.
  • Maurizi, A., M. D’Isidoro, and M. Mircea. 2010. BOLCHEM: An integrated system for atmospheric dynamics and composition. In Integrated systems of meso-meteorological and chemical transport Models, ed. A. Baklanov, M. Alexander, and R. Sokhi, 89–94. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-13980-2_8
  • McFiggans, G., T. F. Mentel, J. Wildt, I. Pullinen, S. Kang, E. Kleist, S. Schmitt, M. Springer, R. Tillmann, C. Wu, et al. 2019. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 565:587–93. doi:10.1038/s41586-018-0871-y.
  • McKay, M. D., R. J. Beckman, and W. J. Conover. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–45.
  • MCM v3.2. 2019. Master chemical mechanism, MCM v3.2. Accessed April 20, 2019. http://mcm.leeds.ac.uk/MCM.
  • Middleton, P., W. R. Stockwell, and W. P. L. Carter. 1990. Aggregation and analysis of volatile organic compound emissions for regional modeling. Atmos. Environ. 24A:1107–33. doi:10.1016/0960-1686(90)90077-Z.
  • Midgley, P. M., and M. Reuther, Eds. 2003. Towards cleaner air for Europe – Science, tools and applications, part 2, overviews from the final reports of the EUROTRAC-2 subprojects. New York: Springer Verlag.
  • Moore, G. E. 1965. Cramming more components onto integrated circuits. Electronics 38:114–17.
  • Mouchel-Vallon, C., P. Bräuer, M. Camredon, R. Valorso, S. Madronich, H. Herrmann, and B. Aumont. 2013. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase. Atmos. Chem. Phys. 13:1023–37. doi:10.5194/acp-13-1023-2013.
  • Moussiopoulos, N., P. Sahm, K. Karatzas, S. Papalexiou, and A. Karagiannidis. 1997. Assessing the impact of the new Athens airport to urban air quality with contemporary air pollution models. Atmos. Environ. 31:1497–511. doi:10.1016/S1352-2310(96)00283-X.
  • Mues, A. C. 2013. Modeling air quality in a changing climate. dissertation. Berlin: Freien Universität Berlin.
  • Murrells, T. P., N. R. Passant, G. Thistlethwaite, A. Wagner, Y. Li, T. Bush, J. Norris, P. J. Coleman, C. Walker, R. A. Stewart, et al. 2010. UK emissions of air pollutants 1970 to 2007, AEAT/ENV/R/2856. Oxford, UK: AEA. Accessed July 11, 2019. https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1010140907_2007_Report_Final_9.pdf.
  • Niki, H., E. E. Daby, and B. Weinstock. 1972. Mechanisms of smog reactions. Adv. Chem. Ser. 113:16–57. doi:10.1021/ba-1972-0113.ch002.
  • Nikolaou, Z. M., J. Y. Chen, Y. Proestos, J. Lelieveld, and R. Sander. 2018. Accelerating simulations using REDCHEM_v0.0 for atmospheric chemistry mechanism reduction. Geosci. Model Dev. 11:3391–407. doi:10.5194/gmd-11-3391-2018.
  • Pétron, G., G. Frost, B. R. Miller, A. I. Hirsch, S. A. Montzka, A. Karion, M. Trainer, C. Sweeney, A. E. Andrews, L. Miller, et al. 2012. Hydrocarbon emissions characterization in the colorado front range: A pilot study. J. Geophys. Res. 117:D04304. doi:10.1029/2011JD016360.
  • Pozzoli, L., I. Bey, S. Rast, M. G. Schultz, P. Stier, and J. Feichter. 2008a. Trace gas and aerosol interactions in the fully coupled model of aerosol‐chemistry‐climate ECHAM5‐HAMMOZ: 1. Model description and insights from the spring 2001 TRACE‐P experiment. J. Geophys. Res. 113:D07308. doi:10.1029/2007JD009007.
  • Pozzoli, L., I. Bey, S. Rast, M. G. Schultz, P. Stier, and J. Feichter. 2008b. Trace gas and aerosol interactions in the fully coupled model of aerosol‐chemistry‐climate ECHAM5‐HAMMOZ: 2. Impact of heterogeneous chemistry on the global aerosol distributions. J. Geophys. Res. 113:D07309. doi:10.1029/2007JD009008.
  • Rao, S. T., H. Luo, M. Astitha, C. Hogrefe, V. Garcia, and R. Mathur. 2019. On the limit to the accuracy of regional-scale air quality models. Atmos. Chem. Phys. Discuss. preprint. doi:10.5194/acp-2019-642.
  • Reynolds, S. D., J. H. Seinfeld, and P. M. Roth. 1973. Mathematical modeling of photochemical air pollution–I. Formulation of the model. Atmos. Environ. 7:1033–61. doi:10.1016/0004-6981(73)90214-X.
  • Russell, A., J. B. Milford, M. S. Bergin, S. McBride, L. McNair, Y. Yang, W. R. Stockwell, and B. Croes. 1995. Urban ozone control and atmospheric reactivity of organic gases. Science 269:491–95. doi:10.1126/science.269.5223.491.
  • Sander, R., A. Kerkweg, P. Jöckel, and J. Lelieveld. 2005. Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys. 5:445–50. doi:10.5194/acp-5-445-2005.
  • Sarwar, G., J. Godowitch, B. Henderson, K. Fahey, G. Pouliot, W. Hutzell, R. Mathur, D. Kang, W. S. Goliff, and W. R. Stockwell. 2013. A comparison of atmospheric composition using the carbon bond and regional atmospheric chemistry mechanisms. Atmos. Chem. Phys. 13:1–18. doi:10.5194/acp-13-1-2013.
  • Sarwar, G., D. Luecken, G. Yarwood, G. Z. Whitten, and W. P. L. Carter. 2008. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteorol. Clim. 47:3–14. doi:10.1175/2007JAMC1393.1.
  • Saunders, E., 2017. Modeling regional & global atmospheric chemistry mechanisms: Observing adverse respiratory health effects due to tropospheric ozone air pollution from modeling output. dissertation. Washington, DC: Howard University. Available ProQuest Dissertations Publishing, Ann Arbor, Michigan.
  • Saunders, S. M., M. E. Jenkin, R. G. Derwent, and M. J. Pilling. 2003. Protocol for the development of the master chemical mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3:161–80. doi:10.5194/acp-3-161-2003.
  • Savenije, M., L. H. van Ulft, E. van Meijgaard, J. S. Henzing, J. M. J. Aan de Brugh, A. M. M. Manders-Groot, and M. Schaap. 2012. Two-way coupling of RACMO2 and LOTOS- EUROS: Implementation of the direct effect of aerosol on radiation. TNO Report: TNO-060-UT-2012-00508, Utrecht, The Netherlands.
  • Seinfeld, J. H. 1988. Ozone air quality models. J. Air Pollut. Control Assoc. 38 (5):616–45. doi:10.1080/08940630.1988.10466404.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. New York: John Wiley & Sons.
  • Shalaby, A., A. S. Zakey, A. B. Tawfik, F. Solmon, F. Giorgi, F. Stordal, S. Sillman, R. A. Zaveri, and A. L. Steiner. 2012. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4). Geosci. Model Dev. 5:741–60. doi:10.5194/gmd-5-741-2012.
  • Simon, H., K. R. Baker, and S. Phillips. 2012. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos. Environ. 61:124–39. doi:10.1016/j.atmosenv.2012.07.012.
  • Simon, H., L. Beck, P. V. Bhave, F. Divita, Y. Hsu, D. Luecken, J. D. Mobley, G. A. Pouliot, A. Reff, G. Sarwar, et al. 2010. The development and uses of EPA’s SPECIATE database. Atmos. Pollut. Res. 1:196–206. doi:10.5094/APR.2010.026.
  • Stern, R., P. Builtjes, M. Schaap, R. Timmermans, R. Vautard, A. Hodzic, M. Memmesheimer, H. Feldmann, E. Renner, R. Wolke, et al. 2008. A model intercomparison study focusing on episodes with elevated PM10 concentrations. Atmos. Env. 42:4567–88. doi:10.1016/j.atmosenv.2008.01.068.
  • Stewart, D. R., E. Saunders, R. Perea, R. Fitzgerald, D. E. Campbell, and W. R. Stockwell. 2019. Projected changes in particulate matter concentrations in the South Coast Air Basin due to basin-wide reductions in nitrogen oxides, volatile organic compounds and ammonia emissions. J. Air Waste Manage. Assoc. 69:192–208. doi:10.1080/10962247.2018.1531795.
  • Stockwell, W. R. 1986. A homogeneous gas phase mechanism for use in a regional acid deposition model. Atmos. Environ. 20:1615–32. doi:10.1016/0004-6981(86)90251-9.
  • Stockwell, W. R., and J. G. Calvert. 1983a. The mechanism of the HO-SO2 reaction. Atmos. Environ. 17:2231–35. doi:10.1016/0004-6981(83)90220-2.
  • Stockwell, W. R., and J. G. Calvert. 1983b. The mechanism of NO3 and HONO formation in the nighttime chemistry of the urban atmosphere. J. Geophy. Res. 88:6673–82. doi:10.1029/JC088iC11p06673.
  • Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld. 1997. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 102:25847–79. doi:10.1029/97JD00849.
  • Stockwell, W. R., and D. Kley. 1994. The Euro-RADM mechanism: A gas-phase chemical mechanism for European air quality studies. Jülich, Germany: Forschungszentrum.
  • Stockwell, W. R., C. V. Lawson, E. Saunders, and W. S. Goliff. 2012. A review of tropospheric atmospheric chemistry and gas-phase chemical mechanisms for air quality modeling. Atmosphere 3:1–32. doi:10.3390/atmos3010001.
  • Stockwell, W. R., P. Middleton, J. S. Chang, and X. Tang. 1990. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 95:16343–67. doi:10.1029/JD095iD10p16343.
  • Szopa, S., B. Aumont, and S. Madronich. 2005a. Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: Development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 5:2497–517. doi:10.5194/acp-5-2497-2005.
  • Szopa, S., B. Aumont, and S. Madronich. 2005b. Assessment of the reduction methods used to develop chemical schemes: Building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations. Atmos. Chem. Phys. 5:2519–38. doi:10.5194/acp-5-2519-2005.
  • Tobias, H. J., and P. J. Ziemann. 2000. Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids. Envir. Sci. Technol. 34:2105–15. doi:10.1021/es9907156.
  • Trukenmüller, A., D. Grawe, and H. Schlünzen. 2004. A model system for the assessment of ambient air quality conforming to EC directives. Meteorol. Z. 13:387–94. doi:10.1127/0941-2948/2004/0013-0387.
  • Venecek, M. A., C. Cai, A. Kaduwela, J. Avise, W. P. L. Carter, and M. J. Kleeman. 2018. Analysis of SAPRC16 chemical mechanism for ambient simulations. Atmos. Environ. 192:136–50. doi:10.1016/j.atmosenv.2018.08.039.
  • Venkatram, A., P. K. Karamchandani, and P. K. Misra. 1988. Testing a comprehensive acid deposition model. Atmos. Environ. 22:737–47. doi:10.1016/0004-6981(88)90011-X.
  • Vereecken, L., B. Aumont, I. Barnes, J. W. Bozzelli, M. J. Goldman, W. H. Green, S. Madronich, M. R. McGillen, A. Mellouki, J. J. Orlando, et al. 2018. Perspective on mechanism development and structure-activity relationships for gas-phase atmospheric chemistry. Int. J. Chem. Kinet. 50:435–69. doi:10.1002/kin.21172.
  • Vereecken, L., D. R. Glowacki, and M. J. Pilling. 2015. Theoretical chemical kinetics in tropospheric chemistry: Methodologies and applications. Chem. Rev. 115:4063–114. doi:10.1021/cr500488p.
  • Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirila, J. Leskinen, J. M. Makela, J. K. Holopainen, U. Pöschl, M. Kulmala, et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467:824–27. doi:10.1038/nature09455.
  • Volkamer, R., J. L. Jimenez, F. S. Martini, K. Dzepina, Q. Zhang, D. Salcedo, L. T. Molina, D. R. Worsnop, and M. J. Molina. 2006. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 33:L17811. doi:10.1029/2006GL026899.
  • Voller, V. R., and F. Porté-Agel. 2002. Moore’s law and numerical modeling. J. Comput. Phys. 179:698–703. doi:10.1006/jcph.2002.7083.
  • Wang, W., C. Men, and W. Lu. 2008. Online prediction model based on support vector machine. Neurocomputing 71:550–58. doi:10.1016/j.neucom.2007.07.020.
  • Warneck, P. 2000. Chemistry of the natural atmosphere. 2rd ed. New York: Academic Press.
  • Watson, L. A., D. E. Shallcross, S. R. Utembe, and M. E. Jenkin. 2008. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction. Atmos. Environ. 42:7196–204. doi:10.1016/j.atmosenv.2008.07.034.
  • Whitten, G. Z., and M. W. Gery. 1986. Development of CBM-X mechanisms for urban and regional AQSMs, Rep. EPA/600/3-86/012. US Environmental Protection Agency, Research Triangle Park, NC, USA.
  • Whitten, G. Z., and H. Hogo. 1999. Mathematical modeling of simulated photochemical smog. EPA Report EPA-600/3-77-011, US Environmental Protection Agency, Research Triangle Park, NC.
  • Whitten, G. Z., H. Hogo, and J. P. Killus. 1980a. The carbon-bond mechanism: A condensed kinetic mechanism for photochemical smog. Environ. Sci. Technol. 14:690–700. doi:10.1021/es60166a008.
  • Whitten, G. Z., J. P. Killus, and H. Hogo. 1980b. Modeling of simulated photochemical smog with kinetic mechanisms. Volume 1. Final report, July 1978-September 1979. OSTI ID: 6871747, Systems Applications, Inc., San Rafael, CA, USA.
  • Whitten, G. Z., J. P. Killus, and R. G. Johnson. 1985. Modeling of auto exhaust for smog chamber data for EKMA development. San Rafael, CA., USA: U.S. Environmental Protection Agency Contract Number 68- 02-3735,Systems Applications, Inc.
  • Wilson, W. E., Jr. 1972. A critical review of the gas-phase reaction kinetics of the hydroxyl radical. J. Phys. Chem. Ref. Data. 1:535–73. doi:10.1063/1.3253102.
  • Yarwood, G., J. Jung, G. Z. Whitten, G. Heo, J. Mellberg, and M. Estes. 2010. Updates to the carbon bond mechanism for version 6 (CB6), Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13.
  • Yarwood, G., S. Rao, M. Yocke, and G. Whitten. 2005. Updates to the carbon bond chemical mechanism: CB05. Final report to the US EPA. EPA Report RT-0400675. Accessed May 8, 2019. http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf.
  • Yee, L. D., G. Isaacman-VanWertz, R. A. Wernis, M. Meng, V. Rivera, N. M. Kreisberg, S. V. Hering, M. S. Bering, M. Glasius, M. A. Upshur, et al. 2018. Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmos. Chem. Phys. 18:10433–57. doi:10.5194/acp-18-10433-2018.
  • Zaveri, R., and L. K. Peters. 1999. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. 104:30387–415. doi:10.1029/1999JD900876.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34:L13801. doi:10.1029/2007GL029979.
  • Zhang, Q. J., M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, et al. 2013. Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: Evaluation of the volatility-basis-set approach within the CHIMERE model. Atmos. Chem. Phys. 13:5767–90. doi:10.5194/acp-13-5767-2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.