1,676
Views
8
CrossRef citations to date
0
Altmetric
Technical Paper

Investigation of real-life operating patterns of wood-burning appliances using stack temperature data

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 393-409 | Received 31 Jul 2019, Accepted 14 Jan 2020, Published online: 09 Mar 2020

References

  • Bari, M. A., G. Baumbach, B. Kuch, and G. Scheffknecht. 2009. Wood smoke as a source of particle-phase organic compounds in residential areas. Atmos. Environ. 43 (31):4722–32. doi:10.1016/j.atmosenv.2008.09.006.
  • Boman, C., B. Forsberg, and T. Sandström. 2006. Shedding new light on wood smoke: A risk factor for respiratory health. Eur. Respiratory Soc. 27:446–47. doi:10.1183/09031936.06.00000806.
  • Brandelet, B., C. Rose, C. Rogaume, and Y. Rogaume. 2018. Impact of ignition technique on total emissions of a firewood stove. Biomass Bioenergy 108:15–24. doi:10.1016/j.biombioe.2017.10.047.
  • Central Boiler. 2018. Classic edge products homepage. Accessed May 9, 2019. https://centralboiler.com/products/classic-edge.
  • Denier Van Der Gon, H. A. C., R. Bergström, C. Fountoukis, C. Johansson, S. N. Pandis, D. Simpson, and A. J. H. Visschedijk. 2015. Particulate emissions from residential wood combustion in Europe–revised estimates and an evaluation. Atmos. Chem. Phys. 15 (11):6503–19. doi:10.5194/acp-15-6503-2015.
  • EIA, (U.S. Energy Information Administration). 2018. Residential energy consumption survey. Accessed September 25, 2017. https://www.eia.gov/consumption/residential/data/2015/hc/php/hc6.7.php.
  • EIA, (U.S. Energy Information Administration). 2019a. Weekly New York no. 2 heating oil residential price. Accessed May 9, 2019. https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=W_EPD2F_PRS_SNY_DPG&f=W.
  • EIA, (U.S. Energy Information Administration). 2019b. Wood and wood waste. Accessed May 1, 2019. https://www.eia.gov/energyexplained/index.php?page=biomass_wood.
  • Englert, N. 2004. Fine particles and human health—a review of epidemiological studies. Toxicol. Lett. 149 (1–3):235–42. doi:10.1016/j.toxlet.2003.12.035.
  • EPA, (U.S. Environmental Protection Agency). 2012. Environmental, energy market, and health characterization of wood-fired hydronic heater technologies. Albany: New York State Energy Research and Development Authority. https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Environmental/Wood-Fired-Hydronic-Heater-Tech.pdf.
  • EPA, (U.S. Environmental Protection Agency). 2014. National Emission Inventory (NEI) data. https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data.
  • EPA, (U.S. Environmental Protection Agency). 2015a. Regulatory Impact Analysis (RIA) for residential wood heaters NSPS revision. https://www.epa.gov/sites/production/files/2015-02/documents/20150204-residential-wood-heaters-ria.pdf.
  • EPA, (U.S. Environmental Protection Agency). 2015b. Standards of performance for new residential wood heaters, new residential hydronic heaters and forced-air furnaces. Final Rule, 80 Fed. Regist. 50.
  • Fachinger, F., F. Drewnick, R. Gieré, and S. Borrmann. 2017. How the user can influence particulate emissions from residential wood and pellet stoves: Emission factors for different fuels and burning conditions. Atmos. Environ. 158:216–26. doi:10.1016/j.atmosenv.2017.03.027.
  • Glasius, M., M. Ketzel, P. Wåhlin, B. Jensen, J. Mønster, R. Berkowicz, and F. Palmgren. 2006. Impact of wood combustion on particle levels in a residential area in Denmark. Atmos. Environ. 40 (37):7115–24. doi:10.1016/j.atmosenv.2006.06.047.
  • Herich, H., M. F. D. Gianini, C. Piot, G. Močnik, J.-L. Jaffrezo, J.-L. Besombes, A. S. H. Prévôt, and C. Hueglin. 2014. Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmos. Environ. 89:64–75. doi:10.1016/j.atmosenv.2014.02.008.
  • Houck, J. E., and P. E. Tiegs. 1998. Residential wood combustion technology review. Volume 1. Technical report, U.S. Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryID=90399.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38 (25):4183–95. doi:10.1016/j.atmosenv.2004.04.020.
  • Maenhaut, W., R. Vermeylen, M. Claeys, J. Vercauteren, C. Matheeussen, and E. Roekens. 2012. Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium. Sci. Total Environ. 437:226–36. doi:10.1016/j.scitotenv.2012.08.015.
  • McDonald, J. D., B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson. 2000. Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Technol. 34 (11):2080–91. doi:10.1021/es9909632.
  • Morris, R. D. 2001. Airborne particulates and hospital admissions for cardiovascular disease: A quantitative review of the evidence. Environ. Health Perspect. 109 (suppl 4):495–500. doi:10.1289/ehp.01109s4495.
  • Naeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, and K. R. Smith. 2007. Woodsmoke health effects: A review. Inhal. Toxicol. 19 (1):67–106. doi:10.1080/08958370600985875.
  • NYSERDA, (New York State Energy Research and Development Authority). 2019. Monthly average price of natural gas – Residential. Accessed September 25, 2019. https://www.nyserda.ny.gov/Researchers-and-Policymakers/Energy-Prices/Natural-Gas/Monthly-Average-Price-of-Natural-Gas-Residential.
  • Oehler, H., R. Mack, H. Hartmann, S. Pelz, M. Wöhler, C. Schmidl, and G. Reichert. 2016. Development of a test procedure to reflect the real life operation of pellet stoves. ETA-Florence Renewable Energies. Paper published in 24th European Biomass Conference and Exhibition, Amsterdam, 738–47.
  • Pettersson, E., C. Boman, R. Westerholm, D. Boström, and A. Nordin. 2011. Stove performance and emission characteristics in residential wood log and pellet combustion, part 2: Wood stove. Energy Fuels 25 (1):315–23. doi:10.1021/ef1007787.
  • Piazzalunga, A., C. Belis, V. Bernardoni, O. Cazzuli, P. Fermo, G. Valli, and R. Vecchi. 2011. Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors. Atmos. Environ. 45 (37):6642–49. doi:10.1016/j.atmosenv.2011.09.008.
  • Pope, C. A., III, and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Reichert, G., and C. Schmidl. 2018. Advanced test methods for firewood stoves: Report on consequences of real-life operation on stove performance. IEA Bioenergy (Wieselburg). http://task32.ieabioenergy.com/wp-content/uploads/2018/10/IEA-Bioenergy-Task-32-Test-Methods.pdf.
  • Reichert, G., C. Schmidl, W. Haslinger, M. Schwabl, W. Moser, S. Aigenbauer, M. Wöhler, and C. Hochenauer. 2016. Investigation of user behavior and assessment of typical operation mode for different types of firewood room heating appliances in Austria. Renewable Energy 93:245–54. doi:10.1016/j.renene.2016.01.092.
  • Reichert, G., H. Hartmann, W. Haslinger, H. Oehler, R. Mack, C. Schmidl, C. Schön, M. Schwabl, H. Stressler, and R. Sturmlechner. 2017. Effect of draught conditions and ignition technique on combustion performance of firewood roomheaters. Renewable Energy 105:547–60. doi:10.1016/j.renene.2016.12.017.
  • Schieder, W., A. Storch, D. Fischer, P. Thielen, A. Zechmeister, S. Poupa, and S. Wampl. 2013. Luftschadstoffausstoß von Festbrennstoff-Einzelöfen–Untersuchung des Einflusses von Festbrennstoff-Einzelöfen auf den Ausstoß von Luftschadstoffen. Wien: Umweltbundesamt GmbH.
  • Schmidl, C., M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca, C. R.-S. Cruz, M. Handler, G. Peng, H. Bauer, and H. Puxbaum. 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos. Environ. 45 (39):7443–54. doi:10.1016/j.atmosenv.2011.05.006.
  • Shen, G., M. Xue, S. Wei, Y. Chen, Q. Zhao, B. Li, H. Wu, and S. Tao. 2013. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci. 25 (9):1808–16. doi:10.1016/S1001-0742(12)60258-7.
  • U.S. Census Bureau. 2019. 2017 data from American Community Survey 5-Year Estimates, House Heating Fuel, ID B25040. U.S. Census Bureau. Accessed April 30, 2019.
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. Tarelho, and C. A. Alves. 2015a. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process. Tech. 131:182–92. doi:10.1016/j.fuproc.2014.11.021.
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. A. C. Tarelho, D. Custódio, C. Colombi, V. Gianelle, A. Sanchez de la Campa, and C. A. Alves. 2015b. Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion. Atmos. Res. 166:92–100. doi:10.1016/j.atmosres.2015.06.016.
  • Wang, Y., P. K. Hopke, O. V. Rattigan, X. Xia, D. C. Chalupa, and M. J. Utell. 2011. Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environmental Science & Technology 45 (17):7387–7393.
  • Wöhler, M., J. S. Andersen, G. Becker, H. Persson, G. Reichert, C. Schön, C. Schmidl, D. Jaeger, and S. K. Pelz. 2016. Investigation of real life operation of biomass room heating appliances–Results of a European survey. Appl. Energy 169:240–49. doi:10.1016/j.apenergy.2016.01.119.
  • Wöhler, M., and S. K. Pelz. 2017. The “beReal” project the firewood method - 19th of January 2017 in the frame of the 5th central European biomass conference, Graz, Austria. Accessed December 4, 2019. http://www.bereal-project.eu/uploads/1/3/4/9/13495461/13.40_the_firewood_method.pdf.