837
Views
7
CrossRef citations to date
0
Altmetric
Technical Paper

Longitudinal emissions evaluation of mixed (cooperative) adaptive cruise control traffic flow and its relationship with stability

, , &
Pages 670-686 | Received 03 Aug 2019, Accepted 29 Mar 2020, Published online: 02 Jul 2020

References

  • Ahn, K., H. Rakha, A. Trani, and M. Van Aerde. 2002. Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J. Transp. Eng. 128 (2):182–90. doi:10.1061/(ASCE)0733-947X(2002)128:2(182).
  • Bando, M., K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. 1995. Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51 (2):1035–42. doi:10.1103/PhysRevE.51.1035.
  • Barth, M., F. An, T. Younglove, C. Levine, G. Scora, M. Ross, and T. Wenzel. 2000. Development of a comprehensive modal emissions model. National Cooperative Highway Research Program, Transportation Research Board of the National Academies.
  • Barth, M., and K. Boriboonsomsin. 2009. Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transp. Res. Part D 14 (6):400–10. doi:10.1016/j.trd.2009.01.004.
  • Chen, D., J. Laval, Z. Zheng, and S. Ahn. 2012. A behavioral car-following model that captures traffic oscillations. Transp. Res. Part B 46 (6):744–61. doi:10.1016/j.trb.2012.01.009.
  • Fagnant, D. J., and K. M. Kockelman. 2014. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C 40:1–13. doi:10.1016/j.trc.2013.12.001.
  • Ge, J. I., S. S. Avedisov, C. R. He, W. B. Qin, M. Sadeghpour, and G. Orosz. 2018. Experimental validation of connected automated vehicle design among human-driven vehicles. Transp. Res. Part C 91:335–52. doi:10.1016/j.trc.2018.04.005.
  • Gramsch, E., V. Papapostolou, F. Reyes, Y. Vásquez, M. Castillo, P. Oyola, … J. Lawrence. 2018. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures. J. Air Waste Manage. Assoc. 68 (4):329–46.
  • Hausberger, S., J. Rodler, P. Sturm, and M. Rexeis. 2003. Emission factors for heavy-duty vehicles and validation by tunnel measurements. Atmos. Environ. 37 (37):5237–45. doi:10.1016/j.atmosenv.2003.05.002.
  • Hoogendoorn, R., B. van Arerm, and S. Hoogendoom. 2014. Automated driving, traffic flow efficiency, and human factors: Literature review. Transp. Res. Rec. 2422 (1):113–20. doi:10.3141/2422-13.
  • Ioannou, P. A., and M. Stefanovic. 2005. Evaluation of ACC vehicles in mixed traffic: Lane change effects and sensitivity analysis. IEEE Trans. Intell. Transp. Syst. 6 (1):79–89. doi:10.1109/TITS.2005.844226.
  • Jeong, E., C. Oh, and G. Lee. 2015. Emission evaluation of inter-vehicle safety warning information systems. Transp. Res. Part D 41:106–17. doi:10.1016/j.trd.2015.09.018.
  • Jiang, R., Q. Wu, and Z. Zhu. 2001. Full velocity difference model for a car-following theory. Phys. Rev. E 64 (1):017101. doi:10.1103/PhysRevE.64.017101.
  • Koupal, J., H. Michaels, M. Cumberworth, C. Bailey, and D. Brzezinski, (2002). Epa’s plan for moves: A comprehensive mobile source emissions model. In: Proceedings of the 12th CRC On-Road Vehicle Emissions Workshop, San Diego, CA.
  • Kudoh, Y., H. Ishitani, R. Matsuhashi, Y. Yoshida, K. Morita, S. Katsuki, and O. Kobayashi. 2001. Environmental evaluation of introducing electric vehicles using a dynamic traffic-flow model. Appl. Energy 69 (2):145–59. doi:10.1016/S0306-2619(01)00005-8.
  • Lee, J., and B. Park. 2012. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment. IEEE Trans. Intell. Transp. Syst. 13 (1):81–90. doi:10.1109/TITS.2011.2178836.
  • Li, X., J. Cui, S. An, and M. Parsafard. 2014. Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation. Transp. Res. Part B 70:319–39. doi:10.1016/j.trb.2014.09.014.
  • Liang, Y., Q. Zha, W. Wang, L. Cui, K. H. Lui, K. F. Ho, … T. Wang. 2017. Revisiting nitrous acid (HONO) emission from on-road vehicles: A tunnel study with a mixed fleet. J. Air Waste Manage. Assoc. 67 (7):797–805. doi:10.1080/10962247.2017.1293573.
  • Liu, H., S. E. Shladover, X. Y. Lu, and X. Kan. 2020. Freeway vehicle fuel efficiency improvement via cooperative adaptive cruise control. J. Intell. Transp. Syst. 1–13. doi:10.1080/15472450.2020.1720673.
  • Ma, J., X. Li, F. Zhou, J. Hu, and B. B. Park. 2017. Parsimonious shooting heuristic for trajectory design of connected automated traffic part II: Computational issues and optimization. Transp. Res. Part B 95:421–41. doi:10.1016/j.trb.2016.06.010.
  • Mahmassani, H. S. 2016. 50th anniversary invited article—autonomous vehicles and connected vehicle systems: Flow and operations considerations. Transp. Sci. 50 (4):1140–62. doi:10.1287/trsc.2016.0712.
  • Milakis, D., B. Van Arem, and B. Van Wee. 2017. Policy and society related implications of automated driving: A review of literature and directions for future research. J. Intell. Transp. Syst. 21 (4):324–48. doi:10.1080/15472450.2017.1291351.
  • Milanés, V., and S. E. Shladover. 2014. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data. Transp. Res. Part C 48:285–300. doi:10.1016/j.trc.2014.09.001.
  • Milanés, V., S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura. 2014. Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 15 (1):296–305. doi:10.1109/TITS.2013.2278494.
  • Newell, G. F. 1961. Nonlinear effects in the dynamics of car following. Oper. Res. 9 (2):209–29. doi:10.1287/opre.9.2.209.
  • Ngoduy, D. 2013. Analytical studies on the instabilities of heterogeneous intelligent traffic flow. Commun. Nonlinear Sci. Numer. Simul. 18 (10):2699–706. doi:10.1016/j.cnsns.2013.02.018.
  • Ngoduy, D. 2015. Effect of the car-following combinations on the instability of heterogeneous traffic flow. Transportmetrica B Transp. Dyn. 3 (1):44–58.
  • Ni, D., J. D. Leonard, C. Jia, and J. Wang. 2015. Vehicle longitudinal control and traffic stream modeling. Transp. Sci. 50 (3):1016–31. doi:10.1287/trsc.2015.0614.
  • Norlund, E. K., and I. Gribkovskaia. 2017. Environmental performance of speed optimization strategies in offshore supply vessel planning under weather uncertainty. Transp. Res. Part D 57:10–22. doi:10.1016/j.trd.2017.08.002.
  • Nowakowski, C., D. Thompson, S. E. Shladover, A. Kailas, and X. Y. Lu (2016a). Operational concepts for truck cooperative adaptive cruise control (CACC) maneuvers. In Transportation Research Board 95th Annual Meeting (No. 16–4462), Washington DC.
  • Nowakowski, C., D. Thompson, S. E. Shladover, A. Kailas, and X. Y. Lu. 2016b. Operational concepts for truck maneuvers with cooperative adaptive cruise control. Transp. Res. Rec. 2559 (1):57–64. doi:10.3141/2559-07.
  • Papageorgiou, M., E. Kosmatopoulos, and I. Papamichail. 2008. Effects of variable speed limits on motorway traffic flow. Transp. Res. Rec. (2047):37–48. doi:10.3141/2047-05.
  • Ploeg, J., E. Semsar-Kazerooni, G. Lijster, N. van de Wouw, and H. Nijmeijer. 2015. Graceful degradation of cooperative adaptive cruise control. IEEE Trans. Intell. Transp. Syst. 16 (1):488–97. doi:10.1109/TITS.2014.2349498.
  • Pueboobpaphan, R., and B. Van Arem. 2010. Driver and vehicle characteristics and platoon and traffic flow stability: Understanding the relationship for design and assessment of cooperative adaptive cruise control. Transp. Res. Rec. (2189):89–97. doi:10.3141/2189-10.
  • Qin, Y., Z. He, and B. Ran. 2019. Rear-end crash risk of CACC-manual driven mixed flow considering the degeneration of CACC systems. IEEE Access 7 (1):140421–29. doi:10.1109/ACCESS.2019.2941496.
  • Qin, Y., and H. Wang. 2018. Analytical framework of string stability of connected and autonomous platoons with electronic throttle angle feedback. Transportmetrica A Transp. Sci. 1–22. doi:10.1080/23249935.2018.1518964.
  • Qin, Y., H. Wang, and B. Ran. 2018. Control design for stable connected cruise control systems to enhance safety and traffic efficiency. IET Intel. Transport Syst. 12 (8):921–30. doi:10.1049/iet-its.2018.5271.
  • Ramezani, H., X. Y. Lu, and S. E. Shladover (2019). Calibration of motor vehicle emission simulator (MOVES) using real heavy-duty truck data. In Transportation Research Board 98th Annual Meeting (No. 19-05836), Washington DC.
  • Sau, J., J. Monteil, R. Billot, and N. E. El Faouzi. 2014. The root locus method: Application to linear stability analysis and design of cooperative car-following models. Transportmetrica B Transp. Dyn. 2 (1):60–82.
  • Schakel, W. J., V. L. Knoop, and B. van Arem. 2012. Integrated lane change model with relaxation and synchronization. Transp. Res. Rec. 2316 (1):47–57. doi:10.3141/2316-06.
  • Shladover, S., D. Su, and X. Y. Lu. 2012. Impacts of cooperative adaptive cruise control on freeway traffic flow. Transp. Res. Rec. (2324):63–70. doi:10.3141/2324-08.
  • Shladover, S. E., and C. Nowakowski. 2019. Regulatory challenges for road vehicle automation: Lessons from the california experience. Transp. Res. Part A 122:125–33.
  • Sun, J., Z. Zheng, and J. Sun. 2018. Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transp. Res. Part B 109:212–37. doi:10.1016/j.trb.2018.01.013.
  • Sun, Z., P. Hao, X. J. Ban, and D. Yang. 2015. Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data. Transp. Res. Part D 34:27–40. doi:10.1016/j.trd.2014.10.005.
  • Taiebat, M., S. Stolper, and M. Xu. 2019. Forecasting the impact of connected and automated vehicles on energy use: A microeconomic study of induced travel and energy rebound. Appl. Energy 247:297–308. doi:10.1016/j.apenergy.2019.03.174.
  • Talebpour, A., and H. S. Mahmassani. 2016. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C 71:143–63. doi:10.1016/j.trc.2016.07.007.
  • Talebpour, A., H. S. Mahmassani, and S. H. Hamdar. 2017. Effect of information availability on stability of traffic flow: Percolation theory approach. Transp. Res. Procedia 23:81–100. doi:10.1016/j.trpro.2017.05.006.
  • Tang, T. Q., H. J. Huang, and H. Y. Shang. 2015. Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Transp. Res. Part D 41:423–32. doi:10.1016/j.trd.2015.10.016.
  • Treiber, M., A. Hennecke, and D. Helbing. 2000. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62 (2):1805–24. doi:10.1103/PhysRevE.62.1805.
  • Treiber, M., and A. Kesting. 2013. Traffic flow dynamics: Data, models and simulation. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Wang, H., Y. Qin, W. Wang, and J. Chen. 2019a. Stability of CACC-manual heterogeneous vehicular flow with partial CACC performance degrading. Transportmetrica B Transp. Dyn. 7 (1):788–813.
  • Wang, H., W. Wang, J. Chen, C. C. Xu, and Y. Li. 2019b. Can we trust the speed-spacing relationship estimated by car-following model from non-stationary trajectory data? Transportmetrica A Transp. Sci. 15 (2):263–84. doi:10.1080/23249935.2018.1466211.
  • Wang, M., W. Daamen, S. P. Hoogendoorn, and B. van Arem. 2014a. Rolling horizon control framework for driver assistance systems. Part I: Mathematical formulation and non-cooperative systems. Transp. Res. Part C 40:271–89. doi:10.1016/j.trc.2013.11.023.
  • Wang, M., W. Daamen, S. P. Hoogendoorn, and B. van Arem. 2014b. Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control. Transp. Res. Part C 40:290–311. doi:10.1016/j.trc.2013.11.024.
  • Ward, J. A. (2009). Heterogeneity, lane-changing and instability in traffic: A mathematical approach (Doctoral dissertation, University of Bristol).
  • Wilson, R. E. 2008. Mechanisms for spatio-temporal pattern formation in highway traffic models. Phil. Trans. Royal Soc. London A Math. Phys. Eng. Sci. 366 (1872):2017–32. doi:10.1098/rsta.2008.0018.
  • Wu, C., G. Zhao, and B. Ou. 2011. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles. Transp. Res. Part D 16 (7):515–24. doi:10.1016/j.trd.2011.06.002.
  • Xiao, L., M. Wang, W. Schakel, and B. van Arem. 2018. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks. Transp. Res. Part C 96:380–97. doi:10.1016/j.trc.2018.10.008.
  • Yang, H., L. Andres, Z. Sun, Q. Gan, and W. L. Jin. 2018. Field tests of a dynamic green driving strategy based on inter-vehicle communication. Transp. Res. Part D 59: doi: 10.1016/j.trd.2018.01.009.
  • Yang, H., and W. L. Jin. 2014. A control theoretic formulation of green driving strategies based on inter-vehicle communications. Transp. Res. Part C 41:48–60. doi:10.1016/j.trc.2014.01.016.
  • Yao, H., J. Cui, X. Li, Y. Wang, and S. An. 2018. A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization. Transp. Res. Part D 62:456–73. doi:10.1016/j.trd.2018.03.010.
  • Yu, H., Z. Fang, F. Lu, A. T. Murray, H. Zhang, P. Peng, … J. Chen. 2019. Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes. Appl. Energy 237:390–403. doi:10.1016/j.apenergy.2019.01.011.
  • Zavala, M., J. I. Huertas, D. Prato, A. Jazcilevich, A. Aguilar, M. Balam, … L. T. Molina. 2017. Real-world emissions of in-use off-road vehicles in Mexico. J. Air Waste Manage. Assoc. 67 (9):958–72. doi:10.1080/10962247.2017.1310677.
  • Zhou, F., X. Li, and J. Ma. 2017. Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography. Transp. Res. Part B 95:394–420. doi:10.1016/j.trb.2016.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.