732
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Pyrolysis kinetic study of cathode material derived from spent lithium ion batteries (LIBs): Comparison of different models

, , , , , , & show all
Pages 844-850 | Received 29 Jun 2020, Accepted 18 Sep 2020, Published online: 20 May 2021

References

  • Antolini, E., and M. Ferretti. 1995. Synthesis and thermal stability of LiCoO2. J. Solid State Chem. 117 (1):1–7. doi:10.1006/jssc.1995.1238.
  • Cheng, S., Y. Qiao, J. Huang, W. Wang, Z. Wang, Y. Yu, and M. Xu. 2019. Effects of Ca and Na acetates on nitrogen transformation during sewage sludge pyrolysis. P. Combust. Inst. 37 (3):2715–22. doi:10.1016/j.proci.2018.08.018.
  • Cho, T., C. Han, Y. Jun, and S. Yoon. 2013. Formation of artificial pores in Nano-TiO2 photo-electrode films using acetylene-black for high-efficiency, dye-sensitized solar cells. SCI Rep. 3:1496. doi:10.1038/srep01496.
  • Coats, A. W., and J. P. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (4914):68. doi:10.1038/201068a0.
  • Da Silva, J. C. G., J. L. F. Alves, W. V. D. A. Galdino, S. L. F. Andersen, and R. F. de Sena. 2018. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manage. 72:265–73. doi:10.1016/j.wasman.2017.11.034.
  • Fernandez, A., L. R. Ortiz, D. Asensio, R. Rodriguez, and G. Mazza. 2020. Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J. Environ. Chem. Eng. 8 (4):103829. doi:10.1016/j.jece.2020.103829.
  • Fernandez, A., J. Soria, R. Rodriguez, J. Baeyens, and G. Mazza. 2019. Macro-TGA steam-assisted gasification of lignocellulosic wastes. J. Environ. Manage. 233:626–35. doi:10.1016/j.jenvman.2018.12.087.
  • Gao, G., X. Luo, X. Lou, Y. Guo, R. Su, J. Guan, Y. Li, H. Yuan, J. Dai, and Z. Jiao. 2019. Efficient sulfuric acid-vitamin C leaching system: Towards enhanced extraction of cobalt from spent lithium-ion batteries. J. Mater. Cycles Waste 21 (10):942–49. doi:10.1007/s10163-019-00850-4.
  • Khiari, B., M. Moussaoui, and M. Jeguirim. 2019. Tomato-processing by-product combustion: Thermal and kinetic analyses. Materials 12 (4):553. doi:10.3390/ma12040553.
  • Li, L., Y. Bian, X. Zhang, Q. Xue, E. Fan, F. Wu, and R. Chen. 2018. Economical recycling process for spent lithium-ion batteries and macro- and micro-scale mechanistic study. J. Power Sources 377:70–79. doi:10.1016/j.jpowsour.2017.12.006.
  • Liu, C., J. Lin, H. Cao, Y. Zhang, and Z. Sun. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. 228:801–13. doi:10.1016/j.jclepro.2019.04.304.
  • Liu, P., L. Xiao, Y. Tang, Y. Chen, L. Ye, and Y. Zhu. 2019. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J. Therm. Anal. Calorim. 136:1323–32. doi:10.1007/s10973-018-7732-7.
  • Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang, and Z. Sun. 2018. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6 (2):1504–21. doi:10.1021/acssuschemeng.7b03811.
  • Ma, Z., J. Wang, Y. Yang, Y. Zhang, C. Zhao, Y. Yu, and S. Wang. 2018. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches. J. Anal. Appl. Pyrol. 134:12–24. doi:10.1016/j.jaap.2018.04.002.
  • Nie, H., L. Xu, D. Song, J. Song, X. Shi, X. Wang, L. Zhang, and Z. Yuan. 2015. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis. Green Chem. 17 (2):1276–80. doi:10.1039/C4GC01951B.
  • Qi, W., G. Liu, C. He, S. Liu, S. Lu, J. Yue, Q. Wang, Z. Wang, Z. Yuan, and J. Hu. 2019. An efficient magnetic carbon-based solid acid treatment for corncob saccharification with high selectivity for xylose and enhanced enzymatic digestibility. Green Chem. 21:1292–304. doi:10.1039/C8GC02854K.
  • Qi, W., W. Yang, Q. Xu, Z. Xu, Q. Wang, C. Liang, S. Liu, C. Ling, Z. Wang, and Z. Yuan. 2020. Comprehensive research on the influence of nonlignocellulosic components on the pyrolysis behavior of chinese distiller’s grain. ACS Sustain. Chem. Eng. 8 (8):3103–13. doi:10.1021/acssuschemeng.9b05848.
  • Rathore, S., H. Madhav, and G. Jaiswar. 2019. Efficient nano-filler for the phase transformation in polyvinylidene fluoride nanocomposites by using nanoparticles of stannous sulfate. Mater. Res. Innovations 23 (4):183–90. doi:10.1080/14328917.2017.1406572.
  • Reis, J. S., R. O. Araujo, V. M. R. Lima, L. S. Queiroz, C. E. F. da Costa, J. J. R. Pardauil, J. S. Chaar, G. N. Rocha Filho, and L. K. C. de Souza. 2019. Combustion properties of potential amazon biomass waste for use as fuel. J. Therm. Anal. Calorim. 138:3535–39. doi:10.1007/s10973-019-08457-5.
  • Sinfronio, F., J. Santos, L. Pereira, A. Souza, M. Conceicao, V. Fernandes Jr, and V. Fonseca. 2005. Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J. Therm. Anal. Calorim. 79:393–99. doi:10.1007/s10973-005-0072-4.
  • Sokoto, M. A., R. Singh, B. B. Krishna, J. Kumar, and T. Bhaskar. 2016. Non-isothermal kinetic study of de-oiled seeds cake of African star apple (Chrosophyllum albidum) using thermogravimetry. Heliyon 2 (10):e172. doi:10.1016/j.heliyon.2016.e00172.
  • Tonbul, Y. 2008. Pyrolysis of pistachio shell as a biomass. J. Therm. Anal. Calorim. 91 (2):641–47. doi:10.1007/s10973-007-8428-6.
  • Wang, F., T. Zhang, Y. He, Y. Zhao, S. Wang, G. Zhang, Y. Zhang, and Y. Feng. 2018. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment. J. Clean. Prod. 185:646–52. doi:10.1016/j.jclepro.2018.03.069.
  • Wang, M., Q. Tan, and J. Li. 2018. Unveiling the role and mechanism of mechanochemical activation on lithium cobalt oxide powders from spent lithium-ion batteries. Environ. Sci. Technol. 52 (22):13136–43. doi:10.1021/acs.est.8b03469.
  • Wang, M., Q. Tan, L. Liu, and J. Li. 2019. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt. ACS Sustain. Chem. Eng. 7 (9):8287–94. doi:10.1021/acssuschemeng.8b06694.
  • Xu, B., S. Hou, M. Chu, G. Cao, and Y. Yang. 2010. An activation-free method for preparing microporous carbon by the pyrolysis of poly(vinylidene fluoride). Carbon 48 (10):2812–14. doi:10.1016/j.carbon.2010.04.011.
  • Yao, Z., S. Yu, W. Su, W. Wu, J. Tang, W. Qi, et al. 2020. Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators. Waste Manage. Res. 38 (3):271–78. doi:10.1177/0734242X19877682.
  • Yao, Z., S. Yu, W. Su, D. Wu, W. Wu, and J. Tang. 2020a. Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries. Waste Manage. Res. 38 (1):100–06. doi:10.1177/0734242X19879224.
  • Yao, Z., S. Yu, W. Su, W. Wu, J. Tang, and W. Qi. 2020b. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manage. Res. 38 (1_suppl):77–85. doi:10.1177/0734242X19897814.
  • Yu, S., W. Su, D. Wu, Z. Yao, J. Liu, J. Tang, and W. Wu. 2019. Thermal treatment of flame retardant plastics: A case study on a waste TV plastic shell sample. Sci. Total Environ. 675:651–57. doi:10.1016/j.scitotenv.2019.04.264.
  • Zhang, G., Z. Du, Y. He, H. Wang, W. Xie, and T. Zhang. 2019. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries. Sustainability 11 (8):1–11.
  • Zhang, G., Y. He, Y. Feng, H. Wang, T. Zhang, W. Xie, and X. Zhu. 2018. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis. J. Clean. Prod. 199:62–68. doi:10.1016/j.jclepro.2018.07.143.
  • Zhang, G., Y. He, H. Wang, Y. Feng, W. Xie, and X. Zhu. 2019. Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries. J. Clean. Prod. 231:1418–27. doi:10.1016/j.jclepro.2019.04.279.
  • Zhang, Z., W. He, G. Li, J. Xia, H. Hu, and J. Huang. 2014. Ultrasound-assisted hydrothermal renovation of LiCoO2 from the cathode of spent lithium-ion batteries. Int. J. Electrochem. Sci. 9 (7):3691–700.
  • Zhao, J., L. Liao, F. Shi, T. Lei, G. Cheng, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, and Y. Cun. 2017. Surface fluorination of reactive battery anode materials for enhanced stability. J. Am. Chem. Soc. 139 (33):11550–58. doi:10.1021/jacs.7b05251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.