691
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Behavior of thallium in pulverized coal utility boiler installations in Southwest China

ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 488-500 | Received 09 Aug 2020, Accepted 09 Nov 2020, Published online: 13 Jan 2021

References

  • Affolter, R. H., S. Groves, W. J. Betterton, W. Benzel, K. L. Conrad, S. M. Swanson, and L. F. Ruppert. 2011. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States. U.S. Geological Survey Data Series 635, pamphlet, 19 p. Accessed October 20, 2020. https://pubs.usgs.gov/ds/635/.
  • Bai, X., H. Ding, J. Lian, D. Ma, X. Yang, N. Sun, W. Xue, and Y. Chang. 2018. Coal production in China: Past, present, and future projections. Int. Geol. Rev. 60 (5–6):535–47. doi:10.1080/00206814.2017.1301226.
  • Belzile, N., and Y. W. Chen. 2017. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 84:218–43. doi:10.1016/j.apgeochem.2017.06.013.
  • Bureau of statistics of Guizhou Province. 2018. Guizhou statistical yearbook. Beijing: China Statistics Press. ( In Chinese).
  • Cao, Z. D. 2006. Sulfur content and its control factors in coal of northern Anluo exploration area, Guizhou province. Coal Geol. Explor. 34 (3):13–15. ( In Chinese). doi:10.1016/S1872-2040(06)60004-2.
  • Chen, D., X. Liu, J. Han, M. Jiang, Y. Xu, and M. Xu. 2018. Measurements of particulate matter concentration by the light scattering method: Optimization of the detection angle. Fuel Process. Technol. 179:124–34. doi:10.1016/j.fuproc.2018.06.016.
  • Chen, G., Y. Sun, Q. Wang, B. Yan, Z. Cheng, and W. Ma. 2019. Partitioning of trace elements in coal combustion products: A comparative study of different applications in China. Fuel 240:31–39. doi:10.1016/j.fuel.2018.11.131.
  • Clarke, L. B., and L. L. Sloss. 1992. Trace elements–emissions from coal combustion and gasifification. London: IEA Coal Research. [ Chapter 2].
  • Dai, S., D. Ren, C. L. Chou, R. B. Finkelman, V. V. Seredin, and Y. Zhou. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 94:3–21. doi:10.1016/j.coal.2011.02.003.
  • Dai, S., D. Ren, Y. Tang, M. Yue, and L. Hao. 2005. Concentration and distribution of elements in late permian coals from western Guizhou province, china. Int. J. Coal Geol. 61 (1–2):119–37. doi:10.1016/s0140-6701(06)80524-2.
  • Dai, S., Y. Sun, and R. Zeng. 2006. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int. J. Coal Geol. 66:217–26. doi:10.1016/j.coal.2005.09.001.
  • Dai, S. F., and R. B. Finkelman. 2018. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 186:155–64. doi:10.1016/j.coal.2017.06.005.
  • Deng, S., Y. Shi, Y. Liu, C. Zhang, X. Wang, Q. Cao, S. Li, and F. Zhang. 2014. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 126:469–75. doi:10.1016/j.fuproc.2014.06.009.
  • Diehl, S. F., M. B. Goldhaber, and J. R. Hatch. 2004. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. Int. J. Coal Geol. 59 (3/4):193–208. doi:10.1016/j.coal.2004.02.003.
  • Dziok, T., S. Andrzej, and W. Adam. 2018. Studies on mercury occurrence in inorganic constituents of polish coking coals. Environ. Sci. Pollut. Res. 26 (4):1–12. doi:10.1007/s11356-018-1667-1.
  • Ewers, U. 1988. Environmental exposure to thallium. Sci. Total Environ. 71:285–92. doi:10.1016/0048-9697(88)90199-4.
  • Fang, T., and Y. Liu. 2019. Equilibrium thallium isotope fractionation and its constraint on Earth’s late veneer. Acta Geochim. 38 (4):459–71. doi:10.1007/s11631-019-00344-y.
  • Finkelman, R. B. 1995. Modes of occurrence of environmentally sensitive trace elements in coals. In Environmental aspects of trace elements in coals, ed. D. J. Swaine and F. Goodarzi, p. 24–50. Dordrecht: Kluwer.
  • GB 31573-2015. 2015. Emission standards of pollutants for inorganic chemical industry. Issued by the Ministry of Environment, the Chinese General Administration of Quality Supervision, Inspection and Quarantine, Beijing. ( In Chinese).
  • GB/T 212-2008. 2008. Proximate analysis of coal. Issued by the Chinese General Administration of Quality Supervision, Inspection and Quarantine and the Standardization Administration of China, Beijing. ( In Chinese).
  • GB/T 213-2008. 2008. Determination of calorific value of coal. Issued by the Chinese General Administration of Quality Supervision, Inspection and Quarantine and the Standardization Administration of China, Beijing. ( In Chinese).
  • GB/T 214-2007. 2007. Determination of total sulfur in coal. Issued by the Chinese General Administration of Quality Supervision, Inspection and Quarantine and the Standardization Administration of China, Beijing. ( In Chinese).
  • Hoffman, R. S. 2000. Thallium poisoning during pregnancy: A case report and comprehensive literature review. J. Toxicol. Clin. Toxicol. 38:767–75. doi:10.1081/CLT-100102390.
  • Karbowska, B. 2016. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 188:640. doi:10.1007/s10661-016-5647-y.
  • Kazantzis, G. 2000. Thallium in the environment and health effects. Environ. Geochem. Health 22:275–80. doi:10.1023/A:1006791514080.
  • Ketris, M. P., and Y. E. Yudovich. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 78 (2):135–48. doi:10.1016/j.coal.2009.01.002.
  • Klein, D. H., A. W. Andren, J. A. Carter, J. F. Emery, C. Feldman, W. Fulkerson, W. S. Lyon, J. C. Ogle, Y. Talmi, R. I. van Hook, et al. 1975. Pathways of thirty-seven trace elements through coal-fired power plant. Environ. Sci. Technol. 9 (10):973–79. doi:10.1021/es60108a007.
  • Li, J., and C. Sun. 2016. Evaluation of the migration of thallium, cadmium, vanadium, and chromium from a thermal power plant. Environ. Earth Sci. 75 (5):388. doi:10.1007/s12665-015-5159-z.
  • Li, J., C. Zhao, Y. Huang, Y. Zhuo, and J. Li. 2019a. In-situ sulfur isotope and trace element of pyrite constraints on the formation and evolution of the Nibao Carlin-type gold deposit in SW China. Acta Geochim. 38 (4):555–75. doi:10.1007/s11631-019-00342-0.
  • Li, W., and J. Zhai. 1994. Both ash and sulfur content and calorific value in Chinese steam coals. Coal convers. 17 (1):12–25. ( In Chinese with English Abstract).
  • Li, X., C. Zhou, J. Li, S. Lu, and J. Yan. 2019b. Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator. Environ. Sci. Pollut. Res. 26:12798–806. doi:10.1007/s11356-019-04570-y.
  • Liu, J., X. Luo, Y. Sun, D. C. W. Tsang, J. Qi, W. Zhang, N. Li, M. L. Yin, J. Wang, H. Lippold, et al. 2019a. Thallium pollution in China and removal technologies for waters: A review. Environ. Int. 126:771–90. doi:10.1016/j.envint.2019.01.076.
  • Liu, S., Z. Zhang, Y. Wang, Y. Hu, W. Liu, C. Chen, Y. Mei, and H. Sun. 2019b. PM2.5 emission characteristics of coal-fired power plants in Beijing-Tianjin-Hebei region, China. Atmos. Pollut. Res. 10 (3):954–59. doi:10.1016/j.apr.2019.01.003.
  • Llorens, J. F., J. L. Fernández-Turiel, and X. Querol. 2001. The fate of trace elements in a large coal-fired power plant. Environ. Geol. 40:409–16. doi:10.1007/s002540000191.
  • López-Antón, M. A., D. Alan Spears, M. Díaz-Somoano, L. Diaz, and M. Rosa Martínez-Tarazona. 2015. Enrichment of thallium in fly ashes in a Spanish circulating fluidized-bed combustion plant. Fuel 146:51–55. doi:10.1016/j.fuel.2015.01.007.
  • López-Antón, M. A., D. A. Spears, M. Díaz-Somoano, and M. R. Martínez-Tarazona. 2013. Thallium in coal: Analysis and environmental implications. Fuel 105 (7):13–18. doi:10.1016/j.fuel.2012.08.004.
  • Maluszynski, M. J. 2009. Thallium in the environment. Ochrona Srodowiska I Zasobów Naturalnych 40:31–37.
  • Meggs, W. J., R. S. Hoffman, R. D. Shih, R. S. Weisman, and L. R. Goldfrank. 1995. Thallium poisoning from maliciously contaminated food. J. Toxicol. Clin. Toxicol. 32:723–30. doi:10.3109/15563659409017979.
  • Meij, R. 1994. Trace elements behavior in coal-fired power plants. Fuel Process. Technol. 39:199–217. doi:10.1016/0378-3820(94)90180-5.
  • Meij, R., and H. Te Winkel. 2007. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos. Environ. 41 (40):9262–72. doi:10.1016/j.atmosenv.2007.04.042.
  • Mokhtar, M. M., R. M. Taib, and M. H. Hassim. 2014. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. J. Air Waste Manage. 64 (8):867–78. doi:10.1080/10962247.2014.897271.
  • National Bureau of Statistic of China. 2019. China statistical yearbook. Beijing: China Statistics Press. ( In Chinese).
  • Pavageau, M., A. Morin, F. Séby, C. Guimon, E. Krupp, C. Pécheyran, J. Poulleau, and O. Donard. 2004. Partitioning of metal species during an enriched fuel combustion experiment. Speciation in the gaseous and particulate phases. Environ. Sci. Technol. 38 (7):2252–63. doi:10.1021/es034408i.
  • Pavlish, J. H., E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson. 2003. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82:89–165. doi:10.1016/S0378-3820(03)00059-6.
  • Peter, A. L. J., and T. Viraraghavan. 2005. Thallium: A review of public health and environmental concerns. Environ. Int. 31 (4):493–501. doi:10.1016/j.envint.2004.09.003.
  • Prick, J. J. G., W. G. Sillevis Smitt, and L. Muller. 1995. Thallium poisoning. Amsterdam: Elsevier Publishing Co.
  • Qi, L., and D. C. Grégoire. 2000. Determination of trace elements in twenty-six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandard Geoanal. Res. 24:51–63. doi:10.1111/j.1751-908x.2000.tb00586.x.
  • Querol, X., J. L. Fernández-Turiel, and A. López-Soler. 1995. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74:331–43. doi:10.1016/0016-2361(95)93464-O.
  • Quick, W. J., and R. M. A. Irons. 2002. Trace element partitioning during the firing of washed and untreated power station coals. Fuel 81 (5):665–72. doi:10.1016/S0016-2361(01)00197-1.
  • Ratafia-Brown, J. A. 1994. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Process. Technol. 39:139–57. doi:10.1016/0378-3820(94)90177-5.
  • Saha, A. 2005. Thallium toxicity: A growing concern. Indian J. Occup. Environ. Med. 9 (2):53–56. doi:10.4103/0019-5278.16741.
  • Saha, A., H. G. Sadhu, A. B. Karnik, T. S. Patel, S. N. Sinhá, and H. N. Saiyed. 2004. Erosion of nails following thallium poisoning: A case report. Occup. Environ. Med. 61:640–42. doi:10.1136/oem.2003.009464.
  • Smolka-Danielowska, D., and D. Fiedor. 2018. Potentially toxic elements in fly ash dependently of applied technology of hard coal combustion. Environ. Sci. Pollut. Res. 25:25091–97. doi:10.1007/s11356-018-2548-3.
  • Spears, D. A., and S. J. Tewalt. 2009. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate coal in the Yorkshire-Nottinghamshire coal-field, UK. Int. J. Coal Geol. 80 (3–4):157–66. doi:10.1016/j.coal.2009.08.010.
  • Thompson, D., and B. B. Argent. 2002. Prediction of the distribution of trace elements between the product streams of the Prenflo gasifier and comparison with reported data. Fuel 81 (5):555–70. doi:10.1016/s0016-2361(01)00150-8.
  • U.S. Environmental Protection Agency. 2009a. EPA/635/R-08/001F (2009) Toxicological review of thallium and compounds (CAS No. 7440–28-0). In support of summary information on the Integrated Risk Information System (IRIS), September.
  • U.S. Environmental Protection Agency. 2009b. National primary drinking water regulation table. Accessed October 17, 2020. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulation-table.
  • U.S. Environmental Protection Agency (U.S. EPA). 1996. Test Method 5. Determination of particulate matter emissions from stationary sources.
  • Viraraghavan, T., and A. Srinivasan. 2011. Thallium: Environmental pollution and health effects. Encyclopedia Environ. Health 325–33. doi:10.1016/b978-0-444-52272-6.00643-7.
  • Wang, S., L. Zhang, G. Li, Y. Wu, J. Hao, N. Pirrone, F. Sprovieri, and M. P. Ancora. 2010. Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys. 10:1183–92. doi:10.5194/acp-10-1183-2010.
  • Wu, B., X. Bai, W. Liu, C. Zhu, Y. Hao, S. Lin, and H. Tian. 2020. Variation characteristics of final size-segregated PM emissions from ultralow emission coal-fired power plants in China. Environ. Pollut. 259:113886. doi:10.1016/j.envpol.2019.113886.
  • Xiao, T., F. Yang, S. Li, B. Zheng, and Z. Ning. 2012. Thallium pollution in China: A geo-environmental perspective. Sci. Total Environ. 421–422:51–58. doi:10.1016/j.scitotenv.2011.04.008.
  • Xiao, T., J. Guha, D. Boyle, C.-Q. Liu, B. Zheng, G. C. Wilson, A. Rouleau, and J. Chen. 2004. Naturally occurring thallium: A hidden geoenvironmental health hazard? Environ. Int. 30 (4):501–07. doi:10.1016/j.envint.2003.10.004.
  • Xu, M., R. Yan, C. Zheng, Y. Qiao, J. Han, and C. Sheng. 2003. Status of trace element emission in a coal combustion process: A review. Fuel Process. Technol. 85:215–37. doi:10.1016/S0378-3820(03)00174-7.
  • Yan, R., D. Gauthier, and G. Flamant. 2001a. Volatility and chemistry of trace elements in a coal combustor. Fuel 80:2217–26. doi:10.1016/s0016-2361(01)00105-3.
  • Yan, R., D. Gauthier, and G. Flamant. 2001b. Partitioning of trace elements in the flue gas from coal combustion. Combust. Flame 125:942–54. doi:10.1016/s0010-2180(00)00239-x.
  • Yang, H., Y. Zhang, C. Zheng, X. Wu, L. Chen, X. Gao, and J. S. Fu. 2018. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000-MW coal-fired power plant. J. Air Waste Manage. 68 (9):920–30. doi:10.1080/10962247.2018.1454992.
  • Yao, S., S. Cheng, J. Li, H. Zhang, J. Jia, and X. Sun. 2019. Effect of wet flue gas desulfurization (WFGD) on fine particle (PM2.5) emission from coal-fired boilers. J. Environ. Sci. 77:32–42. doi:10.1016/j.jes.2018.05.005.
  • Zhang, S., S. Dai, R. B. Finkelman, I. T. Graham, D. French, J. C. Hower, and X. Li. 2019. Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel 255:115710. doi:10.1016/j.fuel.2019.115710.
  • Zhao, S., Y. Duan, C. Wang, M. Liu, J. Lu, H. Tan, X. Wang, and L. Wu. 2017. Migration behavior of trace elements at a coal-fired power plant with different boiler loads. Energ. Fuel 31:747–54. doi:10.1021/acs.energyfuels.6b02393.
  • Zhao, Y., J. Zhang, C. L. Chou, Y. Li, Z. Wang, Y. Ge, and C. Zheng. 2008. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. Int. J. Coal Geol. 73:52–62. doi:10.1016/j.coal.2007.07.007.
  • Zhou, X., X. Y. Bi, X. Y. Li, S. Li, J. Chen, T. R. He, and Z. G. Li. 2020. Fate of cadmium in coal-fired power plants in Guizhou, Southwest China: With emphasis on updated atmospheric emissions. Atmos. Pollut. Res. 11 (5):920–27. doi:10.1016/j.apr.2020.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.