826
Views
1
CrossRef citations to date
0
Altmetric
Notebook Paper

Furthering a partnership: Air quality modeling and improving public health

ORCID Icon, , &
Pages 682-688 | Received 22 Oct 2020, Accepted 05 Jan 2021, Published online: 05 Feb 2021

References

  • Appel, K. W., S. L. Napelenok, K. M. Foley, H. O. T. Pye, C. Hogrefe, D. J. Luecken, J. O. Bash, S. J. Roselle, J. E. Pleim, H. Foroutan, et al. 2017. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 10 (4):1703–32. doi:10.5194/gmd-10-1703-2017.
  • Bachmann, J. 2007. Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards. J. Air Waste Manag. Assoc. 57 (6):652–97. doi:10.3155/1047-3289.57.6.652.
  • Berrocal, V. J., Y. Guan, A. Muyskens, H. Wang, B. J. Reich, J. A. Mulholland, and H. H. Chang. 2020. A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration. Atmos. Environ. 222:117130. doi:10.1016/j.atmosenv.2019.117130.
  • Dedoussi, I. C., S. D. Eastham, E. Monier, and S. R. H. Barrett. 2020. Premature mortality related to United States cross-state air pollution. Nature 578 (7794):261–65. doi:10.1038/s41586-020-1983-8.
  • Dennis, R., T. Fox, M. Fuentes, A. Gilliland, S. Hanna, C. Hogrefe, S. John Irwin, T. Rao, R. Scheffe, K. Schere, et al. 2010. A framework for evaluating regional-scale numerical photochemical modeling systems. Environ. Fluid Mech. 10 (4):471–89. doi:10.1007/s10652-009-9163-2.
  • Di, Q., I. Kloog, P. Koutrakis, A. Lyapustin, Y. Wang, and J. Schwartz. 2016. Assessing PM2.5 exposures with high spatiotemporal resolution across the Continental United States. Environ. Sci. Technol. 50 (9):4712–21. doi:10.1021/acs.est.5b06121.
  • Di, Q., Y. Wang, A. Zanobetti, Y. Wang, P. Koutrakis, C. Choirat, F. Dominici, and J. D. Schwartz. 2017. Air pollution and mortality in the medicare population. New Engl. J. Med. 376 (26):2513–22. doi:10.1056/NEJMoa1702747.
  • Diao, M., T. Holloway, S. Choi, S. M. O’Neill, M. Z. Al-Hamdan, A. V. Donkelaar, R. V. Martin, X. Jin, A. M. Fiore, D. K. Henze, et al. 2019. Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, satellite, and atmospheric models. J. Air Waste Manage. Assoc. 69 (12):1391–414. doi:10.1080/10962247.2019.1668498.
  • Fann, N., H. Roman, C. Fulcher, M. Gentile, B. Hubbell, K. Wesson, and J. Levy. 2011. Maximizing health benefits and minimizing inequality: Incorporating local-scale data in the design and evaluation of air quality policies. Risk Anal. 31 (6):908–22. doi:10.1111/j.1539-6924.2011.01629.x.
  • Friberg, M. D., X. Zhai, H. A. Holmes, H. H. Chang, M. J. Strickland, S. E. Sarnat, P. E. Tolbert, A. G. Russell, and J. A. Mulholland. 2016. Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution. Environ. Sci. Technol. 50 (7):3695–705. doi:10.1021/acs.est.5b05134.
  • Health Effects Institute. 2019. State of global air 2019, www.stateofglobalair.org.
  • Heo, S., and M. L. Bell. 2019. The influence of green space on the short-term effects of particulate matter on hospitalization in the U.S. for 2000-2013. Environ. Res. 174:61–68. doi:10.1016/j.envres.2019.04.019.
  • Huang, R., C. E. Xinxin Zhai, M. D. Ivey, X. H. Friberg, Y. Liu, Q. Di, J. Schwartz, J. A. Mulholland, and A. G. Russell. 2018. Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: Application over North Carolina, USA. Air Qual. Atmos. Health 11 (1):11–22. doi:10.1007/s11869-017-0511-y.
  • Jerrett, M., A. Arain, P. Kanaroglou, B. Beckerman, D. Potoglou, T. Sahsuvaroglu, J. Morrison, and C. Giovis. 2005. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 15 (2):185–204. doi:10.1038/sj.jea.7500388.
  • Jin, X., A. M. Fiore, K. Civerolo, B. Jianzhao, Y. Liu, A. van Donkelaar, R. V. Martin, M. Al-Hamdan, Y. Zhang, T. Z. Insaf, et al. 2019. Comparison of multiple PM 2.5 exposure products for estimating health benefits of emission controls over New York State, USA. Environ. Res. Lett. 14 (8):084023. doi:10.1088/1748-9326/ab2dcb.
  • Kang, D., K. M. Foley, R. Mathur, S. J. Roselle, K. E. Pickering, and D. J. Allen. 2019. Simulating lightning NO production in CMAQv5.2: Performance evaluations. Geosci. Model Dev. 12 (10):4409–24. doi:10.5194/gmd-12-4409-2019.
  • Kelly, J. T., C. J. Jang, B. Timin, B. Gantt, A. Reff, Y. Zhu, S. Long, and A. Hanna. 2019a. A system for developing and projecting PM2.5 spatial fields to correspond to just meeting national ambient air quality standards. Atmos. Environ. X 2:100019. doi:10.1016/j.aeaoa.2019.100019.
  • Kelly, J. T., S. N. Koplitz, K. R. Baker, A. L. Holder, O. T. Havala, B. N. Pye, J. O. Murphy, B. H. Bash, N. C. Henderson, H. S. Possiel, et al. 2019b. Assessing PM2.5 model performance for the conterminous U.S. with comparison to model performance statistics from 2007-2015. Atmos. Environ. 214:116872. doi:10.1016/j.atmosenv.2019.116872.
  • Laurent, O., J. Hu, L. Li, M. Cockburn, L. Escobedo, M. J. Kleeman, and J. Wu. 2014. Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001–2008. Environ. Res. 134:488–95. doi:10.1016/j.envres.2014.05.003.
  • Laurent, O., H. Jianlin, L. Lianfa, M. J. Kleeman, S. M. Bartell, M. Cockburn, L. Escobedo, and W. Jun. 2016. A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001–2008. Environ. Health Perspect. 124 (9):1479–86. doi:10.1289/ehp.1510133.
  • McDonald, B. C., J. A. de Gouw, J. B. Gilman, S. H. Jathar, C. D. Ali Akherati, J. L. Cappa, J. Jimenez, P. L. Lee-Taylor, S. A. Hayes, Y. McKeen, et al. 2018. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359 (6377):760. doi:10.1126/science.aaq0524.
  • McGuinn, L. A., C. Ward-Caviness, L. M. Neas, A. Schneider, Q. Di, A. Chudnovsky, J. Schwartz, P. Koutrakis, A. G. Russell, V. Garcia, et al. 2017. Fine particulate matter and cardiovascular disease: Comparison of assessment methods for long-term exposure. Environ. Res. 159:16–23. doi:10.1016/j.envres.2017.07.041.
  • Ostro, B., J. Hu, D. Goldberg, P. Reynolds, A. Hertz, L. Bernstein, and M. J. Kleeman. 2015. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the California Teachers Study Cohort. Environ. Health Perspect. 123 (6):549–56. doi:10.1289/ehp.1408565.
  • Özkaynak, H., L. K. Baxter, K. L. Dionisio, and J. Burke. 2013. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 23 (6):566–72. doi:10.1038/jes.2013.15.
  • Reynolds, S. D., P. M. Roth, and J. H. Seinfeld. 1973. Mathematical modeling of photochemical air pollution—I: Formulation of the model. Atmos. Environ. (1967) 7 (11):1033–61. doi:10.1016/0004-6981(73)90214-X.
  • Scheffe, R. D., S. B. Madeleine Strum, J. T. Phillips, A. Eyth, S. Fudge, M. Morris, T. Palma, and R. Cook. 2016. Hybrid modeling approach to estimate exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA). Environ. Sci. Technol. 50 (22):12356–64. doi:10.1021/acs.est.6b04752.
  • U.S. EPA 2018a. Technical support document EPA’s 2014 National Air Toxics Assessment. Office of Air Quality Planning and Standards U.S. EPA. Research Triangle Park, NC. https://www.epa.gov/sites/production/files/2018-09/documents/2014_nata_technical_support_document.pdf
  • U.S. EPA 2018b. Risk and exposure assessment for the review of the primary national ambient air quality standard for sulfur oxides. EPA-452/R-18-003. Office of Air Quality Planning and Standards; Health and Environmental Impacts Division U.S. EPA. Research Triangle Park, NC. https://www.epa.gov/sites/production/files/2018-05/documents/primary_so2_naaqs_-_final_rea_-_may_2018.pdf
  • U.S. EPA. 2019. Integrated Science Assessment (ISA) for particulate matter (final report). EPA/600/R-19/188. U.S. Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
  • U.S. EPA 2020a. Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants (Final Report). EPA/600/R-20/012. U.S. Environmental Protection Agency, Washington, DC. https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=348522
  • U.S. EPA 2020b. Policy assessment for the review of the ozone national ambient air quality standards. EPA-452/R-20-001. Office of Air Quality Planning and Standards; Health and Environmental Impacts Division U.S. EPA. Research Triangle Park, NC. https://www.epa.gov/naaqs/particulate-matter-pm-standards-policy-assessments-current-review-0
  • van Donkelaar, A., R. V. Martin, L. Chi, and R. T. Burnett. 2019. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 53 (5):2595–611. doi:10.1021/acs.est.8b06392.
  • Vedal, S., M. J. Campen, J. D. McDonald, T. V. Larson, P. D. Sampson, L. Sheppard, C. D. Simpson, and A. A. Szpiro. 2013. “National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects.” Res Rep Health Eff Inst (178):5–8.
  • Weber, S. A., T. Z. Insaf, E. S. Hall, T. O. Talbot, and A. K. Huff. 2016. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using hierarchical bayesian model estimates. Environ. Res. 151:399–409. doi:10.1016/j.envres.2016.07.012.
  • Wesson, K., N. Fann, M. Morris, T. Fox, and B. Hubbell. 2010. A multi-pollutant, risk-based approach to air quality management: Case study for Detroit. Atmos. Pollut. Res. 1 (4):296–304. doi:10.5094/APR.2010.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.