613
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Trends in particle matter and its elemental composition in Santiago de Chile, 2011 – 2018

, , , , &
Pages 721-736 | Received 01 Jul 2020, Accepted 05 Jan 2021, Published online: 01 Mar 2021

References

  • Amato, F., X. Querol, A. Alastuey, M. Pandolfi, T. Moreno, J. Gracia, and P. Rodriguez. 2009. Evaluating urban PM10 pollution benefit induced by street cleaning activities. Atmos. Environ. 43:4472–80. doi:10.1016/j.atmosenv.2009.06.037.
  • Babicki, S., D. Arndt, A. Marcu, Y. Liang, J. R. Grant, A. Maciejewski, and D. S. Wishart. 2016 8. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 44 (W1):W147–53. doi:10.1093/nar/gkw419.
  • Barraza, F., F. Lambert, H. Jorquera, A. M. Villalobos, and L. Gallardo. 2017. Temporal evolution of main ambient PM2.5 sources in Santiago, Chile, from 1998 to 2012
  • Barraza, F., F. Lambert, H. Jorquera, A. M. Villalobos, and L. Gallardo. 2017. Temporal evolution of main ambient PM2.5 sources in Santiago, Chile, from 1998 to 2012. Atmos. Chem. Phys. 17:10093–107. doi:10.5194/acp-17-10093-2017.
  • Carbone, S., S. Saarikoski, A. Frey, F. Reyes, P. Reyes, M. Castillo, E. Gramsch, P. Oyola, J. Jayne, and D. R. Worsnop. 2013. Chemical characterization of submicron aerosol particles in Santiago de Chile. Aerosol Air Qual. Res. 13:462–73. doi:10.4209/aaqr.2012.10.0261.
  • Chaloulakou, A., P. Kassomenos, N. Spyrellis, P. Demokritou, and P. Koutrakis. 2003. Measurements of PM10 and PM2.5 particle concentrations in Athens. Greece. Atmos. Environ. 37:649–60. doi:10.1016/S1352-2310(02)00898-1.
  • Chow, J. C., J. G. Watson, H. Kuhns, D. H. Vicken Etyemezian, D. C. Lowenthal, S. D. Kohl, J. P. Engelbrecht, and M. C. Green. 2004. Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54:185–208. doi:10.1016/j.chemosphere.2003.07.004.
  • Chuang, P., R. Duvall, M. Shafer, and J. Schauer. 2005. The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys. Res. Lett. 32. doi:10.1029/2004GL021946.
  • de la Paz, D., R. Borge, M. Vedrenne, J. Lumbreras, F. Amato, A. Karanasiou, E. Boldo, and T. Moreno. 2015. Implementation of road dust resuspension in air quality simulations of particulate matter in Madrid (Spain). Front. Environ. Sci. 3:72. doi:10.3389/fenvs.2015.00072.
  • DMC. 2020. Accessed June 15, 2020. https://climatologia.meteochile.gob.cl/application.
  • EPA. 2016. EPA statistical analysis software. Accessed October 2020. https://www.epa.gov/land-research/proucl-software.
  • EPA Regulations. 2020. Regulations, guidance and monitoring plans. Accessed October 2020. https://www.epa.gov/amtic/regulations-guidance-and-monitoring-plans.
  • EPA SPECIATE. 2020. repository of organic gas and particulate matter (PM) speciation profiles of air pollution sources. Accessed October 2020. https://www.epa.gov/air-emissions-modeling/speciate.
  • Everitt, B. S. 1993. Cluster analysis. 3rd ed. London, UK: Heinemann Education.
  • Font, A., L. Guiseppin, M. Blangiardo, V. Ghersi, and G. W. Fuller. 2019. A tale of two cities: Is air pollution improving in Paris and London? Environ. Pollut. 249:1–12. doi:10.1016/j.envpol.2019.01.040.
  • Fu, H., J. Lin, G. Shang, W. Dong, V. H. Grassian, G. R. Carmichael, Y. Li, and J. Chen. 2012. Solubility of iron from combustion source particles in acidic media linked to iron speciation. Environ. Sci. Technol. Lett. 46:11119–27. doi:10.1021/es302558m.
  • Fu, H. B., G. F. Shang, J. Lin, Y. J. Hu, Q. Q. Hu, L. Guo, Y. C. Zhang, and J. M. Chen. 2014. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China. Sci. Total Environ. 481:377–91. doi:10.1016/j.scitotenv.2014.01.118.
  • Garg, B. D., S. H. Cadle, P. A. Mulawa, P. J. Groblicki, C. Laroo, and G. A. Parr. 2000. Brake wear particulate matter emissions. Environ. Sci. Technol. 34:4463. doi:10.1021/es001108h.
  • Garreaud, R., C. Alvarez-Garretón, J. Barichivich, J. P. Boisier, D. Christie, M. Galleguillos, C. LeQuesne, J. McPhee, and M. Zambrano-Bigiarini. 2017. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21:6307–27. doi:10.5194/hess-21-6307-2017.
  • Gillette, D., G. J. Stensland, A. L. Williams, W. Barnard, D. Gatz, P. C. Sinclair, and T. C. Johnson. 1992. Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States. Global Biochem. Cycles 6 (4):437–57. doi:10.1029/91GB02965.
  • Gramsch, E., D. Cáceres, P. Oyola, F. Reyes, Y. Vasquez, M. A. Rubio, and G. Sánchez. 2014. Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmos. Environ. 98:290–98. doi:10.1016/j.atmosenv.2014.08.066.
  • Gramsch, E., F. Cereceda-Balic, P. Oyola, and D. von Baer. 2006. Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data. Atmos. Environ. 40:5464–75. doi:10.1016/j.atmosenv.2006.03.062.
  • Gramsch, E., F. Reyes, Y. Vásquez, P. Oyola, and M. A. Rubio. 2016. Prevalence of freshly generated particles during pollution episodes in Santiago de Chile. Aerosol Air Qual. Res. 16:2172–85. doi:10.4209/aaqr.2015.12.0691.
  • Guieu, C., S. Bonnet, T. Wagener, and M. D. Loÿe-Pilot. 2005. Biomass burning as a source of dissolved iron to the open ocean?. Geophys. Res. Lett. 321:205–13.
  • Hussein, T., C. Johansson, H. Karlsson, and H.-C. Hansson. 2008. Factors affecting non-tailpipe aerosol particle emissions from paved roads: On-road measurements in Stockholm, Sweden. Atmos. Environ. 42:688–702. doi:10.1016/j.atmosenv.2007.09.064.
  • Jhun, I., P. Oyola, F. Moreno, M. Castillo, and P. Koutrakis. 2013. PM2,5 mass and species trend in Santiago de Chile from 1998 to 2010. The impact of fuel related interventions and fuel sales. J. Air Waste Manage. Assoc. 63 (2):161–69. doi:10.1080/10962247.2012.742027.
  • Jorquera, H., and F. Barraza. 2012. Source apportionment of ambient PM2.5 in Santiago, Chile: 1999 and 2004 results. Sci. Total Environ. 435-416:418–29. doi:10.1016/j.scitotenv.2012.07.049.
  • Jorquera, H., W. Palma, and J. Tapia. 2000. An intervention analysis of air quality data at Santiago, Chile. Atmos. Environ. 34:4073–84. doi:10.1016/S1352-2310(00)00161-8.
  • Koutrakis, P., S. N. Sax, J. A. Sarnat, B. Coull, P. Demokritou, P. Oyola, E. Gramsch, and J. García. 2005. Analysis of PM10, PM2.5, and PM2.5–10. Concentrations in Santiago, Chile, from 1989 to 2001. J. Air Waste Manage. Assoc. 55:342–51. doi:10.1080/10473289.2005.10464627.
  • Lenschow, P., Abraham, H. J., Kutzner, K., Lutz, M., Preuss, J. D., Reichenbacher, W., 2001. Some ideas about the sources of PM10. Atmospheric Environment 35:S23–S33.
  • Ley 106. 2013. Exempt resolution 106/2013 from the ministry of the environment, “establishes location criteria to qualify particulate material monitoring stations and states time limits for the purposes that it indicates”. Accessed October 2020. https://www.bcn.cl/leychile/navegar/imprimir?idNorma=1048645&idVersion=2013-03-01.
  • Ley Chile. 2001. Decree 136 from ministry general secretariat for presidency. Establishes primary quality standard for lead in air. Accessed October 2020. https://www.bcn.cl/leychile/navegar?idNorma=179878.
  • Lough, G. C., J. J. Schauer, J. S. Park, M. M. Shafer, J. T. Deminter, and J. P. Weinstein. 2005. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 39:826–36. doi:10.1021/es048715f.
  • Mann, H. B. 1945. Non-parametric tests against trend. Econometrica 13:163–71. doi:10.2307/1907187.
  • Marmur, A., J. A. Mulholland, and A. G. Russell. 2007. Optimized variable source-profile approach for source apportionment. Atmos. Environ. 41:493–505. doi:10.1016/j.atmosenv.2006.08.028.
  • Menares, C., L. Gallardo, M. Kanakidou, R. Seguel, and N. Huneuss. 2020. Increasing trends (2001–2018) in photochemical activity and secondary aerosols in Santiago, Chile. Tellus B:Chemical and Physical Meteorology. 72:1-18. doi:10.1080/16000889.2020.1821512
  • Moreno, F., E. Gramsch, P. Oyola, and M. A. Rubio. 2010. Modification in the soil and traffic-related sources of particle matter between 1998 and 2007 in Santiago de Chile. J. Air Waste Manage. Assoc. 60:1410–21. doi:10.3155/1047-3289.60.12.1410.
  • Olstrup, H., B. Forsberg, H. Orru, M. Spanne, H. Nguyen, P. Molnár, and C. Johansson. 2018. Trends in air pollutants and health impacts in three Swedishcities over the past three decades. Atmos. Chem. Phys. 18:15705–23. doi:10.5194/acp-18-15705-2018.
  • Penkała, M., P. Ogrodnik, and W. Rogula-Kozłowska. 2018. Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments 5:9. doi:10.3390/environments5010009.
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40. doi:10.1029/2000RG000095.
  • Querol, X., A. Alastuey, C. R. Ruiz, B. Artinano, H. C. Hansson, R. M. Harrison, E. Buringh, H. M. Ten Brink, M. Lutz, and P. Bruckmann. 2004. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 38:6547–55. doi:10.1016/j.atmosenv.2004.08.037.
  • Rubio, M. A., K. Sánchez, P. Richter, J. Pey, and E. Gramsch. 2018. Partitioning of the water soluble versus insoluble fraction of trace elements in the city of Santiago. Chile. Atmósfera 31 (4):373–87. doi:10.20937/ATM.2018.31.04.05.
  • Sax, S. N., P. Koutrakis, P. A. Ruiz, F. Cereceda-Balic, E. Gramsch, and P. Oyola. 2007. Trends in elemental composition of PM2.5 in Santiago, Chile from 1998 to 2003. J. Air Waste Manage. Assoc. 57:845–55. doi:10.3155/1047-3289.57.7.845.
  • Seinfeld, J. H., and S. N. Pandis. 1998. Atmospheric chemistry and physics, from air pollution to climate change. New York: Wiley Interscience.
  • Shirmohammadi, F., S. Hasheminassab, A. Saffari, J. J. Schauer, R. J. Delfino, and C. Sioutas. 2015. Fine and ultrafine particulate organic carbon in the Los Angeles Basin: Trends in sources and composition. Sci. Total Environ. 15;541:1083–96. doi:10.1016/j.scitotenv.2015.09.133.
  • SINCA. (1997). Chilean national air quality information system. Accessed June 2020. https://sinca.mma.gob.cl
  • Tagle, M., F. Reyes, Y. Vásquez, S. Carbone, S. Saarikoski, H. Timonen, E. Gramsch, and P. Oyola. 2018. Spatiotemporal variation in composition of submicron particles in Santiago Metropolitan Region, Chile. Front. Environ. Sci. 6:27. doi:10.3389/fenvs.2018.00027.
  • Usach Emission inventory. 2014. Metropolitan region emission inventory database. Accessed June 23, 2020. http://ambiente.usach.cl/estudios/Inf-Inventarios-final1.pdf.
  • Villalobos, A. M., F. Barraza, H. Jorquera, and J. J. Schauer. 2015. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Sci. Total Environ. 512–513:133–42. doi:10.1016/j.scitotenv.2015.01.006.
  • Wahlin, P., R. Berkowicz, and F. Palmgren. 2006. Characterization of traffic-generated particulate matter in Copenhagen. Atmos. Environ. 40:2151–59. doi:10.1016/j.atmosenv.2005.11.049.
  • WHO. 2016. World health organizacion. Accessed April 27, 2020. http://www9.who.int/airpollution/en/.
  • Young, T. M., D. A. Heeraman, G. Sirin, and L. L. Ashbaugh. 2002. Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environ. Sci. Technol. 36:2484. doi:10.1021/es015609u.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.