4,169
Views
2
CrossRef citations to date
0
Altmetric
2020 Smoke Special Grouping of Papers

A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires

, ORCID Icon, , ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon & show all
Pages 791-814 | Received 23 Sep 2020, Accepted 10 Feb 2021, Published online: 23 Jun 2021

References

  • Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113:11770–75. doi:10.1073/pnas.1607171113.
  • Ainslie, B., R. So, and J. Chen. 2020. Operational evaluation of a wildfire air quality model from a forecaster point of view. Submitted.
  • Al-Hamdan, M. Z., W. L. Crosson, A. S. Limaye, D. L. Rickman, D. A. Quattrochi, M. G. Estes, J. R. Qualters, A. H. Sinclair, D. D. Tolsma, K. A. Adeniyi, et al. 2009. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: Potential use for environmental public health surveillance. J. Air Waste Manag. Assoc. 59 (7):865–81. doi:10.3155/1047-3289.59.7.865.
  • Al-Hamdan, M. Z., W. L. Crosson, S. A. Economou, M. G. Estes, S. M. Estes, S. N. Hemmings, S. T. Kent, M. Puckett, D. A. Quattrochi, D. L. Rickman, et al. 2014. Environmental public health applications using remotely sensed data. Geocarto. Int. 29 (1):85–98. doi:10.1080/10106049.2012.715209.
  • Appel, W., S. Napelenok, C. Hogrefe, G. Pouliot, K. Foley, S. Roselle, J. Pleim, J. Bash, H. Pye, N. Heath, et al. 2017. Overview and evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2. In Chapter 11, Air pollution modeling and its application XXV, 69–73. Cham (ZG), Switzerland: Springer International Publishing AG. doi:10.1007/978-3-319-57645-9_11.
  • Baker, K. R., M. C. Woody, G. S. Tonnesen, W. Hutzell, H. O. T. Pye, M. R. Beaver, G. Pouliot, and T. Pierce. 2016. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches. Atmos. Environ. 140:539–54. doi:10.1016/J.ATMOSENV.2016.06.032.
  • Balch, J. K., B. A. Bradley, J. T. Abatzoglou, R. C. Nagy, E. J. Fusco, and A. L. Mahood. 2017. Human expansion of the fire niche. Proc. Natl. Acad. Sci. 114 (11):2946–51. doi:10.1073/pnas.1617394114.
  • Bi, J., A. Wildani, H. H. Chang, and Y. Liu. 2020. Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ. Sci. Technol. 54 (4):2152–62. doi:10.1021/acs.est.9b06046.
  • Borchers Arriagada, N., J. A. Horsley, A. J. Palmer, G. G. Morgan, R. Tham, and F. H. Johnston. 2019. Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis. Environ. Res. 179:108777. doi:10.1016/J.ENVRES.2019.108777.
  • Briggs, G. A. 1975. Plume rise predictions. Air resources atmospheric turbulence and diffusion laboratory. Annual Report ATDL-76/14, 425–78.
  • Chen, J., J. Vaughan, J. Avise, S. O’Neill, and B. Lamb. 2008. Enhancement and evaluation of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. J. Geophys. Res. 113:D14305. doi:10.1029/2007JD009554.
  • Chu, Y., Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, M. Ren, et al. 2016. A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere 7 (10):129. doi:10.3390/atmos7100129.
  • Cleland, S. E., J. J. West, Y. Jia, S. Reid, S. Raffuse, S. O’Neill, and M. L. Serre. 2020. Estimating wildfire smoke concentrations during the October 2017 California fires through bme space/time data fusion of observed, modeled, and satellite-derived PM2.5. Environ. Sci. Technol. 54 (21):13439–47. doi:10.1021/acs.est.0c03761.
  • Crooks, J. L., and H. Özkaynak. 2014. Simultaneous statistical bias correction of multiple PM2.5 species from a regional photochemical grid model. Atmos. Environ. 95:126–41. ISSN 1352–2310. doi:10.1016/j.atmosenv.2014.06.024.
  • Diao, M., T. Holloway, S. Choi, S. M. O’Neill, M. Z. Al-Hamdan, A. Van Donkelaar, R. V. Martin, X. Jin, A. M. Fiore, D. K. Henze, et al. 2019. Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, satellite, and atmospheric models. J. Air Waste Manage. Assoc. 1–24. doi:10.1080/10962247.2019.1668498.
  • Djalalova, I., L. D. Monache, and J. Wilczak. 2015. PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ. 108:76–87. ISSN 1352–2310. doi:10.1016/j.atmosenv.2015.02.021.
  • Drury, S. A., N. Larkin, T. T. Strand, S. M. Huang, S. J. Strenfel, E. M. Banwell, T. E. O’Brien, and S. M. Raffuse. 2014. Intercomparison of fire size, fuel loading, fuel consumption, and smoke emissions estimates on the 2006 Tripod Fire, Washington, USA. Fire Ecol. 10 (1):56–83. doi:10.4996/fireecology.1001056.
  • Dudney, J., L. M. Hallett, L. Larios, E. C. Farrer, E. N. Spotswood, C. Stein, and K. N. Suding. 2017. Lagging behind: Have we overlooked previous-year rainfall effects in annual grasslands? J. Ecol. 105:484–95. doi:10.1111/1365-2745.12671.
  • Engel-Cox, J. A., R. M. Hoff, and A. D. J. Haymet. 2004. Recommendations on the use of satellite remote-sensing data for urban air quality. J. Air Waste Manage. Assoc. 54 (11):1360–71. doi:10.1080/10473289.2004.10471005.
  • Fann, N., B. Alman, R. A. Broome, G. G. Morgan, F. H. Johnston, G. Pouliot, and A. G. Rappold. 2018. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci. Total Environ. 610–611:802–09. doi:10.1016/J.SCITOTENV.2017.08.024.
  • Flannigan, M., A. S. Cantin, W. J. De Groot, M. Wotton, A. Newbery, and L. M. Gowman. 2013. Global wildland fire season severity in the 21st century. For. Ecol. Manage. 294:54–61. doi:10.1016/j.foreco.2012.10.022.
  • Gan, R. W., J. Liu, B. Ford, K. O'Dell, A. Vvvaidyanathan, A. Wilson, J. Volckens, G. Pfister, E. V. Fischer, J. R. Pierce, et al.2020. The association between wildfire smoke exposure and asthma- specific medical care utilization in Oregon during the 2013 wildfire season. J Expo Sci Environ Epidemiol. 30:618–628. doi:10.1038/s41370-020-0210–x.
  • Gan, R. W., J. Liu, B. Ford, K. O’Dell, A. Vaidyanathan, A. Wilson, J. Volckens, G. Pfister, E. V. Fischer, J. R. Pierce, et al. 2017. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. GeoHealth 1:122–36. doi:10.1002/2017GH000073.
  • Garcia-Menendez, F., Y. T. Hu, and M. T. Odman. 2013. Simulating smoke transport from wildland fires with a regional-scale air quality model: Sensitivity to uncertain wind fields. J. Geophys. Res.-Atmos. 118 (12):6493–504. doi:10.1002/jgrd.50524.
  • Garcia-Menendez, F., Y. T. Hu, and M. T. Odman. 2014. Simulating smoke transport from wildland fires with a regional-scale air quality model: Sensitivity to spatiotemporal allocation of fire emissions. Sci. Total Environ. 493:544–53. doi:10.1016/j.scitotenv.2014.05.108.
  • Geng, G., N. L. Murray, D. Tong, J. S. Fu, X. Hu, P. Lee, X. Meng, H. H. Chang, and Y. Liu. 2018. Satellite-based daily PM2.5 estimates during fire seasons in Colorado. J. Geophys. Res.-Atmos 123 (15):8159–71. doi:10.1029/2018JD028573.
  • Goss, M., D. L. Swain, J. T. Abatzoglou, A. Sarhadi, C. Kolden, A. P. Williams, and N. S. Diffenbaugh. 2020. Climate change is increasing the risk of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15:094016. doi:10.1088/1748-9326/ab83a7.
  • Griggs, T., K. K. R. Lai, H. Park, J. K. Patel, and J. White. 2017. Minutes to escape: How one California wildfire damaged so much so quickly. New York Times. www.nytimes.com/interactive/2017/10/12/us/california-wildfire-conditions-speed.html.
  • Gupta, P., and S. A. Christopher. 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res.-Atmos. 114. doi:10.1029/2008jd011496.
  • Haikerwal, A., M. Akram, A. Del Monaco, K. Smith, M. R. Sim, M. Meyer, A. M. Tonkin, M. J. Abramson, and M. Dennekamp. 2015. Impact of fine particulate matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 4:1–10. doi:10.1161/JAHA.114.001653.
  • Hänninen, O., R. Salonen, K. T. Koistinen, T. Lanki, L. Barregard, and M. Jantunen. 2009. Population exposure to fine particles and estimated excess mortality in Finland from an East European wildfire episode. J. Expo. Sci. Environ. Epidemiol. 19:414–22. doi:10.1038/jes.2008.31.
  • Henderson, S. B., M. Brauer, Y. C. MacNab, and S. M. Kennedy. 2011. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. Environ. Health Perspect. 119:1266–71. doi:10.1289/ehp.1002288.
  • Herron-Thorpe, F. L., G. H. Mount, L. K. Emmons, B. K. Lamb, D. A. Jaffe, N. L. Wigder, S. H. Chung, R. Zhang, M. D. Woelfle, and J. K. Vaughan. 2014. Air quality simulations of wildfires in the Pacific Northwest evaluated with surface and satellite observations during the summers of 2007 and 2008. Atmos. Chem. Phys. 14:12533–51. doi:10.5194/acp-14-12533-2014.
  • Hoshiko, S., C. G. Jones, A. Rappold, J. Vargo, W. E. Cascio, and M. Kharrazi. 2019. Out-of-hospital cardiac arrests and wildfire-related particulate matter (PM2.5) during 2015–2017 California wildfires. AGUFM 2019:GH14A–02.
  • Huang, J., J. McQueen, J. Wilczak, I. Djalalova, I. Stajner, P. Shafran, D. Allured, P. Lee, L. Pan, D. Tong, et al. 2017. Improving NOAA NAQFC PM2.5 predictions with a bias correction approach. Weather Forecasting 32 (2):407–21. doi:10.1175/WAF-D-16-0118.1.
  • Hurteau, M. D., A. L. Westerling, C. Wiedinmyer, and B. P. Bryant. 2014. Projected effects of climate and development on California wildfire emissions through 2100. Environ. Sci. Technol. 140203132416003. doi:10.1021/es4050133.
  • Jaffe, D. A., and N. L. Widger. 2012. Ozone production from wildfires: A critical review. Atmos. Environ. 51:1–10. doi:10.1016/J.ATMOSENV.2011.11.063.
  • Jaffe, D. A., S. M. O’Neill, N. K. Larkin, A. L. Holder, D. L. Peterson, J. E. Halofsky, and A. G. Rappold. 2020. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manage. Assoc. 70 (6):583–615. doi:10.1080/10962247.2020.1749731.
  • Johnston, F. H., S. B. Henderson, Y. Chen, J. T. Randerson, M. Marlier, R. S. DeFries, P. Kinney, D. M. J. S. Bowman, and M. Brauer. 2012. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect. 120:695–701. doi:10.1289/ehp.1104422.
  • Keeling, B. 2018. PG&E equipment and power lines caused Northern California wildfires, says Cal Fire. Curbed San Francisco. https://sf.curbed.com/2018/6/8/17443508/santa-rose-napa-fire-wildfire-pge-report-findings.
  • Kochi, I., G. H. Donovan, P. A. Champ, and J. B. Loomis. 2010. The economic cost of adverse health effects from wildfire-smoke exposure: A review. Int. J. Wildland Fire 19:803. doi:10.1071/WF09077.
  • Künzli, N., E. Avol, J. Wu, W. J. Gauderman, E. Rappaport, J. Millstein, J. Bennion, R. McConnell, F. D. Gilliland, K. Berhane, et al. 2006. Health effects of the 2003 Southern California wildfires on children. Am. J. Respir. Crit. Care Med. 174:1221–28. doi:10.1164/rccm.200604-519OC.
  • Larkin, N. K. 2019. Modeling, monitoring, and messaging wildfire smoke for air quality and public health. Health Effects Institute 2019 Annual Conference, Seattle, WA, May 6.
  • Larkin, N. K., S. M. O’Neill, R. Solomon, S. Raffuse, T. Strand, D. C. Sullivan, C. Krull, M. Rorig, J. Peterson, and S. A. Ferguson. 2009. The BlueSky smoke modeling framework. Int. J. Wildland Fire 18 (8):906–20. doi:10.1071/WF07086.
  • Larkin, N. K., S. M. Raffuse, S. Huang, N. Pavlovic, and V. Rao. 2020. The comprehensive fire information reconciled emissions (CFIRE) inventory: Wildland fire emissions developed for the 2011 and 2014 U.S. National Emissions Inventory. J. Air Waste Manage. 70:1165–85. doi:10.1080/10962247.2020.1802365.
  • Larkin, N. K., T. Strand, S. A. Drury, S. Raffuse, R. Solomon, S. O’Neill, N. Wheeler, S. Huang, M. Roring, and H. Hafner. 2012. Phase 1 of the Smoke and Emissions Model Intercomparison Project (SEMIP): Creation of SEMIP and evaluation of current models. Final Report to the Joint Fire Science Program Project #08-1-6–10.
  • Lassman, W., B. Ford, R. W. Gan, G. Pfister, S. Magzamen, E. V. Fischer, and J. R. Pierce. 2017. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 1:106–21. doi:10.1002/2017GH000049.
  • Li, F., X. Zhang, D. P. Roy, and S. Kondragunta. 2019. Estimation of biomass-burning emissions by fusing the fire radiative power retrievals from polar-orbiting and geostationary satellites across the conterminous United States. Atmos. Environ. 211:274–87. doi:10.1016/j.atmosenv.2019.05.017.
  • Li, Y., D. Q. Tong, F. Ngan, M. D. Cohen, A. F. Stein, S. Kondragunta, X. Zhang, C. Ichoku, E. J. Hyer, and R. A. Kahn. 2020. Ensemble PM2.5 forecasting during the 2018 camp fire event using the HYSPLIT transport and dispersion model. J. Geophys. Res.-Atmos. 125 (15):e2020JD032768.
  • Lipner, E. M., K. O’Dell, S. J. Brey, B. Ford, J. R. Pierce, E. V. Fischer, and J. L. Crooks. 2019. The associations between clinical respiratory outcomes and ambient wildfire smoke exposure among pediatric asthma patients at National Jewish Health, 2012–2015. GeoHealth 3:146–59. doi:10.1029/2018GH000142.
  • Liu, J. C., A. Wilson, L. J. Mickley, F. Dominici, K. Ebisu, Y. Wang, M. P. Sulprizio, R. D. Peng, X. Yue, J.-Y. Son, et al. 2017. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28:77–85. doi:10.1097/EDE.0000000000000556.
  • Liu, Y., R. J. Park, D. J. Jacob, Q. Li, V. Kilaru, and J. A. Sarnat. 2004. Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res.-Atmos. 109 (D22). doi: 10.1029/2004jd005025.
  • Lyapustin, A., J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin. 2011a. Multi-Angle Implementation of Atmospheric Correction (MAIAC): Part 1. Radiative transfer basis and look-up tables. J. Geophys. Res. 116:D03210. doi:10.1029/2010JD014985.
  • Lyapustin, A., and Y. Wang. 2018. MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) data user’s guide. Accessed April 2020. https://modis-land.gsfc.nasa.gov/pdf/MCD19_UserGuide_final_Feb-6-2018.pdf.
  • Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J. S. Reid. 2011b. MultiAngle Implementation of Atmospheric Correction (MAIAC): Part 2. Aerosol algorithm. J. Geophys. Res. 116:D03211. doi:10.1029/2010JD014986.
  • Lyapustin, A., Y. Wang, I. Laszlo, T. Hilker, F. Hall, P. Sellers, J. Tucker, and S. Korkin. 2012. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). 3: Atmospheric correction. Rem. Sens. Environ. 127:385–93. doi:10.1016/j.rse.2012.09.002.
  • Lyapustin, A., Y. Wang, S. Korkin, and D. Huang. 2018. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11:5741–65. doi:10.5194/amt-11-5741-2018.
  • Mallia, D. V., A. K. Kochanski, S. P. Urbanski, and J. C. Lin. 2018. Optimizing smoke and plume rise modeling approaches at local scales. Atmosphere 9 (5):166. doi:10.3390/atmos9050166.
  • Mass, C. F., and D. Ovens. 2019. The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. Bull. Amer. Meteor. Soc. 100:235–56. doi:10.1175/BAMS-D-18-0037.1.
  • McClure, C. D., and D. A. Jaffe. 2018. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. U.S.A. 115 (31):7901–06. doi:10.1073/pnas.1804353115.
  • Miller, R. K., C. B. Field, and K. J. Mach. 2020. Barriers and enablers for prescribed burns for wildfire management in California. Nat. Sustain. 3:101–09. doi:10.1038/s41893-019-0451-7.
  • NASA. 2020a. Multi-Angle Implementation of Atmospheric Correction (MAIAC) (MCD19). Accessed April 2020. https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain/maiac.
  • NASA. 2020b. Multi-Angle Implementation of Atmospheric Correction (MAIAC) (MCD19). Accessed April 2020. https://modis-land.gsfc.nasa.gov/MAIAC.html.
  • NCEP North American Regional Reanalysis (NARR). 2005. Research data archive at the National Center for Atmospheric Research. Boulder, CO: Computational and Information Systems Laboratory.
  • O’Dell, K., B. Ford, E. V. Fischer, and J. R. Pierce. 2019. Contribution of wildland-fire smoke to US PM2.5 and its influence on recent trends. Environ. Sci. Technol. 53 (4):1797–804. doi:10.1021/acs.est.8b05430.
  • O’Neill, S. M., and S. Raffuse. 2021. High temporal resolution satellite fire detection data provide important improvements in smoke forecasting for large wildfires. Eos, 102. doi:10.1029/2021EO155076.
  • Pope, C. A., III, and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Pouliot, G., T. Pierce, W. Benjey, S. M. O’Neill, and S. A. Ferguson. 2005. Wildfire emission modeling: Integrating BlueSky and SMOKE. Proceedings of the 14th International Emission Inventory Conference (extended abstract), Las Vegas, Nevada. https://www3.epa.gov/ttn/chief/conference/ei14/session12/pouliot.pdf.
  • Prichard, S. J., M. C. Kennedy, A. G. Andreu, P. C. Eagle, N. H. French, and M. Billmire. 2019. Next-generation biomass mapping for regional emissions and carbon inventories: Incorporating uncertainty in wildland fuel characterization. J. Geophys. Res.-Biogeo. 124 (12):3699–716. doi:10.1029/2019jg005083.
  • Prichard, S. J., S. M. O’Neill, P. Eagle, A. G. Andreu, B. Drye, J. Dubowy, S. Urbanski, and T. M. Strand. 2020. Wildland fire emission factors in North America: Synthesis of existing data, measurement needs and management applications. Int. J. Wildland Fire 29 (2):132–47. doi:10.1071/WF19066.
  • Rappold, A. G., J. Reyes, G. Pouliot, W. E. Cascio, and D. Diaz-Sanchez. 2017. Community vulnerability to health impacts of wildland fire smoke exposure. Sci. Technol. 51:6674–82. doi:10.1021/ACS.EST.6B06200.
  • Rappold, A. G., S. L. Stone, W. E. Cascio, L. M. Neas, V. J. Kilaru, M. S. Carraway, J. J. Szykman, A. Ising, W. E. Cleve, J. T. Meredith, et al. 2011. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Heal. Perspect 119:1415–20. doi:10.1289/ehp.1003206.
  • Reid, C. E., M. Brauer, F. H. Johnston, M. Jerrett, J. R. Balmes, and C. T. Elliott. 2016a. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124:1334–43. doi:10.1289/ehp.1409277.
  • Reid, C. E., M. Jerrett, I. B. Tager, M. L. Petersen, J. K. Mann, and J. R. Balmes. 2016b. Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach. Environ. Res. 150:227–35. doi:10.1016/J.ENVRES.2016.06.012.
  • Reid, C. E., M. Jerrett, M. L. Petersen, G. G. Pfister, P. E. Morefield, I. B. Tager, S. M. Raffuse, and J. R. Balmes. 2015. Spatiotemporal prediction of fine particulate matter during the 2008 Northern California wildfires using machine learning. Environ. Sci. Technol. 49:3887–96. doi:10.1021/es505846r.
  • Richardson, L. A., P. A. Champ, and J. B. Loomis. 2012. The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in Southern California. J. For. Econ. 18:14–35. doi:10.1016/J.JFE.2011.05.002.
  • Schigas, R., and R. Stull. 2018. Wildfire smoke forecasting systems. Presented at North Central Clean Air Forum. https://firesmoke.ca/resources/BSC-2018SmokeForecastingSystems.pdf.
  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair. 2017. A closer look at the ABI on the GOES-R Series. Bull. Amer. Meteor. Soc. 98 (4):681–98. doi:10.1175/BAMS-D-15-00230.1.
  • Schmit, T. J., S. S. Lindstrom, J. J. Gerth, and M. M. Gunshor. 2018. Applications of the 16 spectral bands on the Advanced Baseline Imager (ABI). J. Oper. Meteor. 6 (4):33–46. doi:10.15191/nwajom.2018.0604.
  • Schweizer, D., R. Cisneros, and G. Shaw. 2016. A comparative analysis of temporary and permanent beta attenuation monitors: The importance of understanding data and equipment limitations when creating PM2.5 air quality health advisories. Atmos. Pollut. Res. 7:865–75. doi:10.1016/j.apr.2016.02.003.
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers. 2008. A description of the advanced research WRF Version 3. NCAR, Boulder, CO. 113.
  • Smith, C., B. Hatchett, and M. Kaplan. 2018. A surface observation based climatology of Diablo-like winds in California’s Wine Country and western Sierra Nevada. Fire 1:25. doi:10.3390/fire1020025.
  • Sonoma County. Sonoma County Community Wildfire Protection Plan. https://www.firesafesonoma.org/wp-content/uploads/cwpp-final.pdf.
  • Spracklen, D. V., L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan, and A. L. Westerling. 2009. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. 114:D20301. doi:10.1029/2008JD010966.
  • Steel, Z. L., H. D. Safford, and J. H. Viers. 2015. The fire frequency-severity relationship and the legacy of firesuppression in California forests. Ecosphere 6 (1):8. doi:10.1890/ES14-00224.1.
  • Strand, T. M., N. Larkin, K. J. Craig, S. Raffuse, D. Sullivan, R. Solomon, M. Rorig, N. Wheeler, and D. Pryden. 2012. Analyses of BlueSky Gateway PM2.5 predictions during the 2007 southern and 2008 northern California fires. J. Geophys. Res.-Atmos. 117:D17301–D17301. doi:10.1029/2012JD017627.
  • Trent, A. 2006. Smoke particulate monitors: 2006 update. Technical Report 0625-2842-MTDC (14 pp.). Missoula, MT: U.S. Department of Agriculture Forest Service, Missoula Technology and Development Center.
  • Urbanski, S. 2014. Wildland fire emissions, carbon, and climate: Emission factors. For. Ecol. Manage. 317:51–60. doi:10.1016/j.foreco.2013.05.045.
  • Van Donkelaar, A., R. V. Martin, M. Brauer, R. Kahn, R. Levy, C. Verduzco, and P. J. Villeneuve. 2010. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 118 (6):847–55. doi:10.1289/ehp.0901623.
  • Weichenthal, S., R. Kulka, E. Lavigne, D. Van Rijswijk, M. Brauer, P. J. Villeneuve, D. Stieb, L. Joseph, and R. T. Burnett. 2017. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology 28:329–37. doi:10.1097/EDE.0000000000000636.
  • Wettstein, Z. S., S. Hoshiko, J. Fahimi, R. J. Harrison, W. E. Cascio, and A. G. Rappold. 2018. Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am. Heart Assoc. 7:e007492. doi:10.1161/JAHA.117.007492.
  • Wilkins, J. L., B. De Foy, A. M. Thompson, D. A. Peterson, E. J. Hyer, C. Graves, J. Fishman, and G. A. Morris. 2020. Evaluation of stratospheric intrusions and biomass burning plumes on the vertical distribution of tropospheric ozone over the Midwestern U.S. J. Geophys. Res.-Atmos. 125:e2020JD032454. doi:10.1029/2020JD032454.
  • Wilkins, J. L., G. Pouliot, K. Foley, W. Appel, and T. Pierce. 2018. The impact of US wildland fires on ozone and particulate matter: A comparison of measurements and CMAQ model predictions from 2008 to 2012. Int. J. Wildland Fire 27:684. doi:10.1071/WF18053.
  • Yao, J., and S. B. Henderson. 2014. An empirical model to estimate daily forest fire smoke exposure over a large geographic area using air quality, meteorological, and remote sensing data. J Expo Sci Environ Epidemiol. 2: 328–335. doi:10.1038/jes.2013.87.
  • Yao, J., M. Brauer, and S. B. Henderson. 2013. Evaluation of a wildfire smoke forecasting system as a tool for public health protection. Environ. Health Perspect. 121:10. doi:10.1289/ehp.1306768.
  • Yuchi, W., J. Yao, K. E. McLean, R. Stull, R. Pavlovic, D. Davignon, M. D. Moran, and S. B. Henderson. 2016. Blending forest fire smoke forecasts with observed data can improve their utility for public health applications. Atmos. Environ. 145:308–17. ISSN 1352–2310. doi:10.1016/j.atmosenv.2016.09.049.
  • Zhang, H., J. Wang, L. C. Garciía, C. Ge, T. Plessel, J. Szykman, B. Murphy, and T. L. Spero. 2020. Improving surface PM2.5 forecasts in the United States using an ensemble of chemical transport model outputs: 1. Bias correction with surface observations in nonrural areas. J. Geophys Res. Atmos. 125:e2019JD032293. doi:10.1029/2019JD032293.
  • Zhou, L., K. R. Baker, S. L. Napelenok, G. Pouliot, R. Elleman, S. M. O’Neill, S. P. Urbanski, and D. C. Wong. 2018. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport. Sci. Total Environ. 627:523–33. doi:10.1016/j.scitotenv.2018.01.237.
  • Zou, Y., S. M. O’Neill, N. K. Larkin, E. C. Alvarado, R. Solomon, C. Mass, Y. Liu, M. T. Odman, and H. Shen. 2019. Machine learning-based integration of high-resolution wildfire smoke simulations and observations for regional health impact assessment. Int. J. Environ. Res. Public Health 16 (12):2137. doi:10.3390/ijerph16122137.
  • Zou, Y., Y. Wang, Y. Qian, H. Tian, J. Yang, and E. Alvarado. 2020. Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability. Atmos. Chem. Phys. 20:995–1020. doi:10.5194/acp-20-995-2020.