1,079
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Characterization of ground-based atmospheric pollution and meteorology sampling stations during the Lake Michigan Ozone Study 2017

, ORCID Icon, , , , , , , , , , , , , , , , & show all
Pages 866-889 | Received 25 Sep 2020, Accepted 23 Feb 2021, Published online: 27 Apr 2021

References

  • Abdioskouei, M., Z. Adelman, J. Al-Saadi, T. Bertram, G. Carmichael, M. Christiansen, P. Cleary, A. C. Czarnetzki, A. Dickens, M. Fuoco, et al. 2019. Lake Michigan Ozone Study (2017) preliminary finding report. Lake Michigan Air Directors Consortium (LADCO). https://www.ladco.org/technical/projects/lmos-2017/.
  • Abdi-Oskouei, M., G. Carmichael, M. Christiansen, G. Ferrada, B. Roozitalab, N. Sobhani, K. Wade, A. Czarnetzki, R. B. Pierce, T. Wagner, et al. 2020. Sensitivity of meteorological skill to selection of WRF-Chem physical parameterizations and impact on ozone prediction during the Lake Michigan Ozone Study (LMOS). J. Geophys. Res. 2008:e2019JD031971. doi:10.1029/2019JD031971.
  • Abeleira, A., I. B. Pollack, B. Sive, Y. Zhou, E. V. Fischer, and D. K. Farmer. 2017. Source characterization of volatile organic compounds in the Colorado Northern front range metropolitan area during spring and summer 2015. J. Geophys. Res. 122:3595–613. doi:10.1002/2016JD026227.
  • Benjamin, S. G., S. S. Weygandt, J. M. Brown, M. Hu, C. R. Alexander, T. G. Smirnova, J. B. Olson, E. P. James, D. C. Dowell, G. A. Grell, et al. 2016. A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Weather Rev. 144 (4):1669–94. doi:10.1175/MWR-D-15-0242.1.
  • Bowne, N., and D. Shearer. 1991. Summary of LMOS 1991 field measurements program, Des Plaines, IL. Lake Michigan Air Directors Consortium.
  • Chowdhury, B., P. Karamchandani, R. Sykes, D. Henn, and E. Knipping. 2015. Reactive puff model SCICHEM: Model enhancements and performance studies. Atmos. Environ. 117:242–58. doi:10.1016/j.atmosenv.2015.07.012.
  • Cleary, P. A., N. Fuhrman, L. Schulz, J. Schafer, J. Fillingham, H. Bootsma, J. McQueen, Y. Tang, T. Langel, S. McKeen, et al. 2015. Ozone distributions over southern Lake Michigan: Comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts. Atmos. Chem. Phys. 15 (9):5109–22. doi:10.5194/acp-15-5109-2015.
  • Conley, S. A., I. C. Faloona, D. H. Lenschow, A. Karion, and C. Sweeney. 2014. A low-cost system for measuring horizontal winds from single-engine aircraft. J. Atmos. Oceanic Technol. 31 (6):1312–20. doi:10.1175/JTECH-D-13-00143.1.
  • de Gouw, J. A., J. B. Gilman, S. W. Kim, B. M. Lerner, G. Isaacman-vanwertz, B. C. McDonald, C. Warneke, W. C. Kuster, B. L. Lefer, S. M. Griffith, et al. 2017. Chemistry of volatile organic compounds in the Los Angeles basin: Nighttime removal of alkenes and determination of emission ratios. J. Geophys. Res. 122 (11):843–811,861. doi:10.1002/2017JD027459.
  • de Gouw, J. A., C. Warneke, D. D. Parrish, J. S. Holloway, M. Trainer, and F. C. Fehsenfeld. 2003. Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. J. Geophys. Res. 108. doi:10.1029/2002je001978.
  • Dye, T. S., P. T. Roberts, and M. E. Korc. 1995. Observations of transport processes for ozone and ozone precursors during the 1991 Lake-Michigan ozone study. J. App. Meteorol. 34 (8):1877–89.
  • Foley, T., E. A. Betterton, P. E. Robert Jacko, and J. Hillery. 2011. Lake Michigan air quality: The 1994-2003 LADCO aircraft project (LAP). Atmos. Environ. 45 (18):3192–202. doi:10.1016/j.atmosenv.2011.02.033.
  • Goldberg, D. L., C. P. Loughner, M. Tzortziou, J. W. Stehr, K. E. Pickering, L. T. Marufu, and R. R. Dickerson. 2014. Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ. 84:9–19. doi:10.1016/j.atmosenv.2013.11.008.
  • Hanna, S. R., and J. C. Chang. 1995. Relations between meteorology and ozone in the Lake-Michigan region. J. Appl. Meteorol. 34 (3):670–78.
  • Hastie, D. R., J. Narayan, C. Schiller, H. Niki, P. B. Shepson, D. M. L. Sills, P. A. Taylor, W. J. Moroz, J. W. Drummond, N. Reid, et al. 1999. Observational evidence for the impact of the lake breeze circulation on ozone concentrations in Southern Ontario. Atmos. Environ. 33 (2):323–35. doi:10.1016/S1352-2310(98)00199-X.
  • Herman, J., A. Cede, E. Spinei, G. Mount, M. Tzortziou, and N. Abuhassan. 2009. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res. Atmos. 114 (D13):1–20. doi:10.1029/2009jd011848.
  • Hughes, D. D., M. B. Christiansen, A. Milani, M. P. Vermeuel, G. A. Novak, H. D. Alwe, A. F. Dickens, R. B. Pierce, D. B. Millet, T. H. Bertram, et al. 2021. PM2.5 chemistry, organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study. Atmos. Environ. 244:13. doi:10.1016/j.atmosenv.2020.117939.
  • Isakov, V., T. M. Barzyk, E. R. Smith, S. Arunachalam, B. Naess, and A. Venkatram. 2017. A web-based screening tool for near-port air quality assessments. Environ. Modell. Software 98:21–34. doi:10.1016/j.envsoft.2017.09.004.
  • Johnson, G. M., T. Trieu, M. Azzi, and S. Chamberlain. 1993. Results from Airtrak 2000 systems, Lake Michigan Ozone Study 1991 field program, Des Plaines, IL. Lake Michigan Air Directors Consortium, 238.
  • Johnson, G. R., E. R. Jayaratne, J. Lau, V. Thomas, A. M. Juwono, B. Kitchen, and L. Morawska. 2013. Remote measurement of diesel locomotive emission factors and particle size distributions. Atmos. Environ. 81:148–57. doi:10.1016/j.atmosenv.2013.09.019.
  • Judd, L. M., J. A. Al-Saadi, S. J. Janz, M. G. Kowalewski, R. Bradley Pierce, J. J. Szykman, L. C. Valin, R. Swap, A. Cede, M. Mueller, et al. 2019. Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. Atmos. Meas. Tech. 12 (11):6091–111. doi:10.5194/amt-2019-161.
  • Khlystov, A., C. Stanier, and S. N. Pandis. 2004. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 38 (sup1):229–38. doi:10.1080/02786820390229543.
  • Kleinman, L. I. 2005. A comparative study of ozone production in five U.S. metropolitan areas. J. Geophys. Res. 110 (D2):D02301–D02301. doi:10.1029/2004JD005096.
  • Lee, J. H., P. K. Hopke, and J. R. Turner. 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest supersite. J. Geophys. Res. 111 (C11003):111. doi:10.1029/2005JD006329.
  • Lennartson, G. J., and M. D. Schwartz. 2002. The lake breeze-ground-level ozone connection in eastern Wisconsin: A climatological perspective. Int. J. Climatol. 22 (11):1347–64. doi:10.1002/joc.802.
  • LMOS Team. 2018. LMOS – Lake Michigan Ozone Study 2017. https://www-air.larc.nasa.gov/missions/lmos/index.html.
  • Lyons, W. A. 1972. The climatology and prediction of the Chicago lake breeze. J. Appl. Meteorol. 11 (8):1259–70. http://www.jstor.org/stable/26176965.
  • Lyons, W. A., and H. S. Cole. 1976. Photochemical oxidant transport: Mesoscale lake breeze and synoptic-scale aspects. J. Appl. Meteorol. 15 (7):733–43.
  • Lyons, W. A., and L. E. Olsson. 1973. Detailed mesometeorological studies of air pollution dispersion in the Chicago lake breeze. Mon. Weather Rev. 101 (5):387–403.
  • Lyons, W. A., C. J. Tremback, and R. A. Pielke. 1995. Applications of the Regional Atmospheric Modeling System (RAMS) to provide input to photochemical grid models for the Lake Michigan Ozone Study (LMOS). J. Appl. Meteorol. 34 (8):1762–86.
  • Millet, D. B., H. D. Alwe, X. Chen, M. J. Deventer, T. J. Griffis, R. Holzinger, S. B. Bertman, P. S. Rickly, P. S. Stevens, T. Léonardis, et al. 2018. Bidirectional ecosystem-atmosphere fluxes of volatile organic compounds across the mass spectrum: How many matter? ACS Earth Space Chem. 2 (8):764–77. doi:10.1021/acsearthspacechem.8b00061.
  • Norris, G., R. Duvall, S. Brown, and S. Bai. 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide. U.S. Washington, DC: Environmental Protection Agency.
  • Paatero, P., and P. K. Hopke. 2003. Discarding or downweighting high-noise variables in factor analytic models. Anal. Chim. Acta 490 (1–2):277–89. doi:10.1016/S0003-2670(02)01643-4.
  • Pekney, N. J., C. I. Davidson, L. Zhou, and P. K. Hopke. 2006. Application of PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 40:952–61. doi:10.1080/02786820500543324.
  • Pierce, B., R. Kaleel, A. Dickens, T. H. Bertram, C. Stanier, and D. M. Kenski, 2016. White paper: Lake Michigan Ozone Study 2017 (LMOS 2017). http://ladco.org/reports/ozone/post08/Great_Lakes_Ozone_Study_White_Paper_Draft_v6.pdf.
  • Reff, A., S. I. Eberly, and P. V. Bhave. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manage. Assoc. 57 (2):146–54. doi:10.1080/10473289.2007.10465319.
  • Roberts, P., P. Roth, C. Blanchard, M. Korc, and F. Lurmann. 1995. Characteristics of VOC-limited and NOx limited areas within the Lake Michigan air quality region. Des Plaines, IL: Lake Michigan air directors consortium.
  • Rolph, G., A. Stein, and B. Stunder. 2017. Real-time environmental applications and display system: Ready. Environ. Modell. Software 95:210–28. doi:10.1016/j.envsoft.2017.06.025.
  • Schauffler, S. M., E. L. Atlas, D. R. Blake, F. Flocke, R. A. Lueb, J. M. Lee-Taylor, V. Stroud, and W. Travnicek. 1999. Distributions of brominated organic compounds in the troposphere and lower stratosphere. J. Geophys. Res. 104 (D17):21513–35. doi:10.1029/1999JD900197.
  • Sillman, S. 1995. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 100:14175–88. doi:10.1029/94jd02953.
  • Snyder, M. G., A. Venkatram, D. K. Heist, S. G. Perry, W. B. Petersen, and V. Isakov. 2013. RLINE: A line source dispersion model for near-surface releases. Atmos. Environ. 77:748–56. doi:10.1016/j.atmosenv.2013.05.074.
  • Stanier, C. O., R. B. Pierce, M. Abdioskouei, Z. E. Adelman, J. Al-Saadi, H. D. Alwe, T. H. Bertram, G. R. Carmichael, M. B. Christiansen, P. A. Cleary, et al. 2021. “Overview of the Lake Michigan Ozone Study 2017.” Working paper, University of Iowa. Bull. Am. Meteorol. Soc.
  • Stauffer, R. M., A. M. Thompson, D. K. Martins, R. D. Clark, D. L. Goldberg, C. P. Loughner, R. Delgado, R. R. Dickerson, J. W. Stehr, and M. A. Tzortziou. 2015. Bay breeze influence on surface ozone at Edgewood, MD during July 2011. J. Atmos. Chem. 72 (3–4):335–53. doi:10.1007/s10874-012-9241-6.
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12):2059–77. doi:10.1175/bams-d-14-00110.1.
  • Sullivan, J. T., T. Berkoff, G. Gronoff, T. Knepp, M. Pippin, D. Allen, L. Twigg, R. Swap, M. Tzortziou, A. M. Thompson, et al. 2018. The ozone water–land environmental transition study: An innovative strategy for understanding Chesapeake Bay pollution events. Bull. Am. Meteorol. Soc. 100 (2):291–306. doi:10.1175/bams-d-18-0025.1.
  • Thornhill, D. A., A. E. Williams, T. B. Onasch, E. Wood, S. C. Herndon, C. E. Kolb, W. B. Knighton, M. Zavala, L. T. Molina, and L. C. Marr. 2010. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City. Atmos. Chem. Phys. 10 (8):3629–44. doi:10.5194/acp-10-3629-2010.
  • Venkatram, A., and T. W. Horst. 2006. Approximating dispersion from a finite line source. Atmos. Environ. 40 (13):2401–08. doi:10.1016/j.atmosenv.2005.12.014.
  • Vermeuel, M. P., G. A. Novak, H. D. Alwe, D. D. Hughes, R. Kaleel, A. F. Dickens, D. Kenski, A. Czarnetzki, E. A. Stone, C. O. Stanier, et al. 2019. Sensitivity of ozone production to NOs and VOC Along the Lake Michigan coastline. J. Geophys. Res. Atmos. 124 (20):10989–1006. doi:10.1029/2019JD030842.
  • Victory, L. 2018. New pre-owned metra locomotives contribute to pollution; CEO says new locomotives too expensive. CBS 2 Chicago. https://chicago.cbslocal.com/2018/12/06/metra-locomotive-pollution/.
  • Wagner, T. J., A. C. Czarnetzki, M. Christiansen, R. B. Pierce, C. O. Stanier, and E. W. Eloranta. 2021. “Observations of the development and vertical structure of Lake Michigan lake breezes.” Working paper, University of Wisconsin-Madison. J. Atmos. Sci.
  • Warneke, C., S. A. McKeen, J. A. de Gouw, P. D. Goldan, W. C. Kuster, J. S. Holloway, E. J. Williams, B. M. Lerner, D. D. Parrish, M. Trainer, et al. 2007. Determination of urban volatile organic compound emission ratios and comparison with an emissions database. J. Geophys. Res. 112. doi:10.1029/2006jd007930.
  • Yuan, B., Y. Liu, M. Shao, S. H. Lu, and D. G. Streets. 2010. Biomass burning contributions to ambient VOCs species at a receptor site in the Pearl River Delta (PRD), China. Environ. Sci. Technol. 44 (12):4577–82. doi:10.1021/es1003389.
  • Zhou, L., E. Kim, P. Hopke, C. Stanier, and S. Pandis. 2005. Mining airborne particulate size distribution data by positive matrix factorization. J. Geophys. Res. 110. doi:10.1029/2004JD004707.
  • Zhou, L., E. Kim, P. K. Hopke, C. Stanier, and S. N. Pandis. 2004. Advanced factor analysis on Pittsburgh particle size-distribution data special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Sci. Technol. 38 (sup1):118–32. doi:10.1080/02786820390229589.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.