1,115
Views
0
CrossRef citations to date
0
Altmetric
2020 Smoke Special Grouping of Papers

Application and evaluation of a low-cost PM sensor and data fusion with CMAQ simulations to quantify the impacts of prescribed burning on air quality in Southwestern Georgia, USA

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 815-829 | Received 23 Oct 2020, Accepted 19 Apr 2021, Published online: 23 Jun 2021

References

  • Barkjohn, K. K., M. H. Bergin, C. Norris, J. J. Schauer, Y. Zhang, M. Black, M. Hu, and J. Zhang. 2020. Using low-cost sensors to quantify the effects of air filtration on indoor and personal exposure relevant PM2.5 concentrations in Beijing, China. Aerosol Air Qual. Res. 20 (2):297–313. AAGR Aerosol and Air Quality Research. doi:10.4209/aaqr.2018.11.0394.
  • Brook, R. D., B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S. C. Smith, et al. 2004. Air pollution and cardiovascular disease. Circulation 109 (21):2655–71. http://circ.ahajournals.org/content/109/21/2655.
  • Byun, D., and K. L. Schere. 2006. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 59 (2):51. American Society of Mechanical Engineers. doi:10.1115/1.2128636.
  • Carolina Environmental Program. 2013. Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) use manual, edited. https://www.cmascenter.org/smoke/documentation/3.5.1/manual_smokev351.pdf.
  • Cohen, A. J., M. Brauer, R. Burnett, H. R. Anderson, J. Frostad, K. Estep, K. Balakrishnan, B. Brunekreef, L. Dandona, R. Dandona, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the global burden of diseases study 2015. Lancet 389 (10082):1907–18. doi:10.1016/S0140-6736(17)30505-6.
  • Cortez-Lugo, M., M. Ramírez-Aguilar, R. Pérez-Padilla, R. Sansores-Martínez, A. Ramírez-Venegas, and A. Barraza-Villarreal. 2015. Effect of personal exposure to PM2.5 on respiratory health in a mexican panel of patients with COPD. Int. J. Environ. Res. Public Health 12 (9):10635–47. doi:10.3390/ijerph120910635.
  • Delp, W. W., and B. C. Singer. 2020. Wildfire smoke adjustment factors for low-cost and professional PM2.5 monitors with optical sensors. Sensors 20 (13):3683. doi:10.3390/s20133683.
  • Dennekamp, M., and M. J. Abramson. 2011. The effects of bushfire smoke on respiratory health. Respirology 16 (2):198–209. Wiley/Blackwell (10.1111). doi:10.1111/j.1440-1843.2010.01868.x.
  • EPA, U.S. 2017. 2017 National Emissions Inventory (NEI) data. Accessed February 6, 2021. https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data.
  • EPD, DNR. 2018. 2018 ambient air monitoring plan. Georgia department of natural resources, environmental protection division, air protection branch. Accessed February 11, 2021. https://airgeorgia.org/docs/2018%20Ambient%20Air%20Monitoring%20Plan.pdf
  • Fann, N., B. Alman, R. A. Broome, G. G. Morgan, F. H. Johnston, G. Pouliot, and A. G. Rappold. 2018. The health impacts and economic value of wildland fire episodes in the US: 2008-2012. Sci. Total Environ. 610 (January):802–09. doi:10.1016/j.scitotenv.2017.08.024.
  • Friberg, M. D., X. Zhai, H. A. Holmes, H. H. Chang, M. J. Strickland, S. E. Sarnat, P. E. Tolbert, A. G. Russell, and J. A. Mulholland. 2016. Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution. Environ. Sci. Technol. 50 (7):3695–705. American Chemical Society. doi:10.1021/acs.est.5b05134.
  • Gao, M., J. Cao, and E. Seto. 2015. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 199 (April):56–65. Elsevier. doi:10.1016/J.ENVPOL.2015.01.013.
  • Garcia-Menendez, F., Y. Hu, and M. T. Odman. 2013. Simulating smoke transport from wildland fires with a regional-scale air quality model: Sensitivity to uncertain wind fields. J. Geophys. Res. Atmos. 118 (12):6493–504. John Wiley & Sons, Ltd. doi:10.1002/jgrd.50524.
  • Gupta, P., P. Doraiswamy, R. Levy, O. Pikelnaya, J. Maibach, B. Feenstra, A. Polidori, F. Kiros, and K. C. Mills. 2018. Impact of California fires on local and regional air quality: The role of a low-cost sensor network and satellite observations. GeoHealth, June. Wiley-Blackwell. doi:10.1029/2018GH000136.
  • Haikerwal, A., M. Akram, A. Del Monaco, K. Smith, M. R. Sim, M. Meyer, A. M. Tonkin, M. J. Abramson, and M. Dennekamp. 2015. Impact of fine particulate matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 4 (7):e001653. American Heart Association, Inc. doi:10.1161/JAHA.114.001653.
  • Han, I., E. Symanski, and T. H. Stock. 2017. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air. J. Air Waste Manage. Assoc. 67 (3):330–40. Taylor & Francis. doi:10.1080/10962247.2016.1241195.
  • Holder, A. L., A. K. Mebust, L. A. Maghran, M. R. McGown, K. E. Stewart, D. M. Vallano, R. A. Elleman, and K. R. Baker. 2020. Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke. Sensors 20 (17):4796. MDPI AG. doi:10.3390/s20174796.
  • Huang, R., M. Qin, Y. Hu, A. G. Russell, and M. T. Odman. 2020. Apportioning prescribed fire impacts on PM2.5 among individual fires through dispersion modeling. Atmos. Environ. 223:117260. Pergamon, January. doi:10.1016/J.ATMOSENV.2020.117260.
  • Huang, R., X. Zhai, C. E. Ivey, M. D. Friberg, X. Hu, Y. Liu, Q. Di, J. Schwartz, J. A. Mulholland, and A. G. Russell. 2018a. Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: Application over North Carolina, USA. Air Qual. Atmos. Heal. 11 (1):11–22. Springer Netherlands. doi:10.1007/s11869-017-0511-y.
  • Huang, R., X. Zhang, D. Chan, S. Kondragunta, A. G. Russell, and M. T. Odman. 2018b. Burned area comparisons between prescribed burning permits in Southeastern United States and two satellite-derived products. J. Geophys. Res. Atmos. 123 (9):4746–57. Wiley-Blackwell. doi:10.1029/2017JD028217.
  • Johnson, K. K., M. H. Bergin, A. G. Russell, and G. S. W. Hagler. 2016. Using low cost sensors to measure ambient particulate matter concentrations and on-road emissions factors. Atmos. Meas. Tech. Discuss. February 1–22. doi:10.5194/amt-2015-331.
  • Johnson, K. K., M. H. Bergin, A. G. Russell, and G. S. W. Hagler. 2018. Field test of several low-cost particulate matter sensors in high and low concentration urban environments. Aerosol Air Qual. Res 18 (3):565–78. doi:10.4209/aaqr.2017.10.0418.
  • Joint Fire Science Program. 2009. Consume 3.0-A software tool for computing fuel consumption. https://www.firescience.gov/projects/98-1-9-06/supdocs/98-1-9-06_FSBrief55-Final.pdf.
  • Kelleher, S., C. Quinn, D. Miller-Lionberg, and J. Volckens. 2018. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke. Atmos. Meas. Tech. 11 (2):1087–97. doi:10.5194/amt-11-1087-2018.
  • Kelly, K. E., J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, and A. Butterfield. 2017. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 221 (February):491–500. Elsevier. doi:10.1016/J.ENVPOL.2016.12.039.
  • Lal, R. M., K. Das, Y. Fan, K. K. Barkjohn, N. Botchwey, A. Ramaswami, and A. G. Russell. 2020. Connecting air quality with emotional well-being and neighborhood infrastructure in a US city. Environ. Health Insights 14 (1):117863022091548. SAGE Publications Inc. doi:10.1177/1178630220915488.
  • Landis, M. S., R. W. Long, J. Krug, M. Colon, R. Vanderpool, A. Habel, and S. P. Urbanski. 2021. The U.S. EPA Wildland fire sensor challenge: Performance and evaluation of solver submitted multi-pollutant sensor systems. Atmos. Environ. 247:118165. doi:10.1016/j.atmosenv.2020.118165.
  • Larkin, N. K., S. M. O’Neill, R. Solomon, S. Raffuse, T. Strand, D. C. Sullivan, C. Krull, M. Rorig, J. Peterson, and S. A. Ferguson. 2009. The bluesky smoke modeling framework. Int. J. Wildl. Fire 18 (8):906. CSIRO PUBLISHING. doi:10.1071/WF07086.
  • McKenzie, D., C. L. Raymond, L.-K. B. Kellogg, R. A. Norheim, A. G. Andreu, A. C. Bayard, K. E. Kopper, and E. Elman. 2007. Mapping fuels at multiple scales: Landscape application of the fuel characteristic classification systemthis article is one of a selection of papers published in the special forum on the fuel characteristic classification system. Can. J. For. Res. 37 (12):2421–37. doi:10.1139/X07-056.
  • McNider, R. T., A. Pour-Biazar, K. Doty, A. White, Y. Wu, M. Qin, Y. Hu, T. Odman, P. Cleary, E. Knipping, et al. 2018. Examination of the physical atmosphere in the great lakes region and its potential impact on air quality - over-water stability and satellite assimilation. J. Appl. Meteorol. Climatol 57 (12):2789–816. JAMC-D-17-0355.1, August. doi:10.1175/JAMC-D-17-0355.1.
  • Napelenok, S. L., D. S. Cohan, Y. Hu, and A. G. Russell. 2006. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmos. Environ. 40 (32):6112–21. doi:10.1016/j.atmosenv.2006.05.039.
  • NICC. 2017. Wildland fire summary and statistics annual report 2017. Accessed February 6, 2021. https://www.predictiveservices.nifc.gov/intelligence/2017_statssumm/annual_report_2017.pdf.
  • Odman, M. T., R. Huang, A. A. Pophale, R. D. Sakhpara, Y. Hu, A. G. Russell, and M. E. Chang. 2018. Forecasting the impacts of prescribed fires for dynamic air quality management. Atmosphere 9 (6):220. doi:10.3390/atmos9060220.
  • Rappold, A. G., J. Reyes, G. Pouliot, W. E. Cascio, and D. Diaz-Sanchez. 2017. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol. 51 (12):6674–82. American Chemical Society. doi:10.1021/acs.est.6b06200.
  • Reisen, F., C. P. (Mick) Meyer, L. McCaw, J. C. Powell, K. Tolhurst, M. D. Keywood, and J. L. Gras. 2011. Impact of smoke from biomass burning on air quality in rural communities in Southern Australia. Atmos. Environ. 45 (24):3944–53. Pergamon. doi:10.1016/J.ATMOSENV.2011.04.060.
  • Sayahi, T., A. Butterfield, and K. E. Kelly. 2019. Long-term field evaluation of the plantower PMS low-cost particulate matter sensors. Environ. Pollut. 245:932–40. doi:10.1016/j.envpol.2018.11.065.
  • Stanaway, J. D., A. Afshin, E. Gakidou, S. S. Lim, D. Abate, K. H. Abate, C. Abbafati, N. Abbasi, H. Abbastabar, F. Abd-Allah, et al. 2018. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease stu. Lancet 392 (10159):1923–94. Lancet Publishing Group. doi:10.1016/S0140-6736(18)32225-6.
  • US Census Bureau. 2015. 2010 American community survey 5-year estimates data profiles. Accessed April 18, 2021. https://data.census.gov.
  • US EPA. 2019. 2011 National Emissions Inventory (NEI) data. Accessed June 8, 2019. https://www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data.
  • Valdés, A., A. Zanobetti, J. I. Halonen, L. Cifuentes, D. Morata, and J. Schwartz. 2012. Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: A time series study. Environ. Heal. 11 (1):82. doi:10.1186/1476-069X-11-82.
  • Van Den Heuvel, R., J. Staelens, G. Koppen, and G. Schoeters. 2018. Toxicity of urban PM10 and relation with tracers of biomass burning. Int. J. Environ. Res. Public Health 15 (2):320. doi:10.3390/ijerph15020320.
  • West, J. J., A. Cohen, F. Dentener, B. Brunekreef, T. Zhu, B. Armstrong, M. L. Bell, M. Brauer, G. Carmichael, D. L. Costa, et al. 2016. What we breathe impacts our health: Improving understanding of the link between air pollution and health. Environ. Sci. Technol. 50 (10):4895–904. doi:10.1021/acs.est.5b03827.
  • WRF Model V3.6. 2019. Accessed October 17, 2019. http://www2.mmm.ucar.edu/wrf/users/wrfv3.6/wrf_model.html.
  • Zamora, M. L., F. Xiong, D. Gentner, B. Kerkez, J. Kohrman-Glaser, and K. Koehler. 2019. Field and laboratory evaluations of the low-cost plantower particulate matter sensor. Environ. Sci. Technol. 53 (2):838–49. American Chemical Society. doi:10.1021/acs.est.8b05174.
  • Zhang, J., H. Sun, Q. Chen, J. Gu, Z. Ding, and Y. Xu. 2019. Effects of individual ozone exposure on lung function in the elderly: A cross-sectional study in China. Environ. Sci. Pollut. Res. 26 (12):11690–95. Springer Verlag. doi:10.1007/s11356-019-04324-w.
  • Zheng, T., M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E. Carlson. 2018 April. Field evaluation of low-cost particulate matter sensors in high and low concentration environments. Atmos. Meas. Tech. Discuss. 1–40. doi:10.5194/amt-2018-111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.