5,359
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Ambient sampling of real-world residential wood combustion plumes

, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, & show all
Pages 710-719 | Received 18 Oct 2021, Accepted 15 Feb 2022, Published online: 24 Feb 2022

References

  • Allen, G.A., P. Babich, and R.L. Poirot 2004. Evaluation of a new approach for real time assessment of wood smoke PM. Air & Waste Management Association Visibility Specialty Conference on Regional and Global Perspectives on Haze: Causes, Consequences and Controversies, Asheville, NC, 1–11. https://www.nescaum.org/documents/2004-10-25-allen-realtime_woodsmoke_indicator_awma.pdf
  • Buonocore, J.J., P. Salimifard, D.R. Michanowicz, and J.G. Allen. 2021. A decade of the U.S. energy mix transitioning away from coal: Historical reconstruction of the reductions in the public health burden of energy. Environ. Res. Lett. 16 (5):054030. doi:10.1088/1748-9326/abe74c.
  • Chow, J.C., J.G. Watson, M.C. Green, X. Wang, L.W.A. Chen, D.L. Trimble, P.M. Cropper, S.D. Kohl, and S.B. Gronstal. 2018. Separation of brown carbon from black carbon for IMPROVE and chemical speciation network PM2.5 samples. J. Air Waste Manage. Assoc. 68 (5):494–510. doi:10.1080/10962247.2018.1426653.
  • Day, D.E., J.L. Hand, C.M. Carrico, G. Engling, and W.C. Malm. 2006. Humidification factors from laboratory studies of fresh smoke from biomass fuels. J. Geophys. Res.: Atmos 111:D22. doi:10.1029/2006JD007221.
  • Favez, O., H. Cachier, J. Sciare, R. Sarda-Esteve, and L. Martinon. 2009. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ. 43 (22–23):3640–44. doi:10.1016/j.atmosenv.2009.04.035.
  • Garg, S., B.P. Chandra, V. Sinha, R. Sarda-Esteve, V. Gros, and B. Sinha. 2016. Limitation of the use of the absorption angstrom exponent for source apportionment of equivalent black carbon: A case study from the North West Indo-Gangetic Plain. Environ. Sci. Technol. 50 (2):814–24. doi:10.1021/acs.est.5b03868.
  • Grange, S.K., H. Lotscher, A. Fischer, L. Emmenegger, and C. Hueglin. 2020. Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018. Atmos. Meas. Tech. 13 (4):1867–85. doi:10.5194/amt-13-1867-2020.
  • Healy, R.M., J.M. Wang, U. Sofowote, Y. Su, J. Debosz, M. Noble, A. Munoz, C.-H. Jeong, N. Hilker, G.J. Evans, et al. 2019. Black carbon in the lower fraser valley, British Columbia: Impact of 2017 wildfires on local air quality and aerosol optical properties. Atmos. Environ 217:116976. doi:10.1016/j.atmosenv.2019.116976.
  • Helin, A., A. Virkkula, J. Backman, L. Pirjola, O. Sippula, P. Aakko‐saksa, S. Väätäinen, F. Mylläri, A. Järvinen, and M. Bloss. 2021. Variation of absorption ångström exponent in aerosols from different emission sources. J. Geophys. Res.: Atmos 126:e2020JD034094. doi:10.1029/2020JD034094.
  • Holder, A.L., T.L.B. Yelverton, A.T. Brashear, and P.H. Kariher 2019. Black carbon emissions from residential wood combustion appliances; EPA/600/R-20/039, United States Environmental Protection Agency.
  • Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–29. doi:10.1126/science.1180353.
  • Kirchstetter, T.W., T. Novakov, and P.V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. D: Atmos. 109 (21):1–12. doi:10.1029/2004JD004999.
  • Kirchstetter, T.W., and T.L. Thatcher. 2012. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos. Chem. Phys. 12 (14):6067–72. doi:10.5194/acp-12-6067-2012.
  • Kleinman, L.I., A.J. Sedlacek, K. Adachi, P.R. Buseck, S. Collier, M.K. Dubey, A.L. Hodshire, E. Lewis, T.B. Onasch, J.R. Pierce, et al. 2020. Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. Atmos. Chem. Phys. 20 (21):13319–41. doi:10.5194/acp-20-13319-2020.
  • Lack, D.A., and C.D. Cappa. 2010. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys. 10 (9):4207–20. doi:10.5194/acp-10-4207-2010.
  • Li, X.H., M.D. Xiao, X.Z. Xu, J.C. Zhou, K.Q. Yang, Z.H. Wang, W.J. Zhang, P.K. Hopke, and W.X. Zhao. 2020. Light absorption properties of organic aerosol from wood pyrolysis: Measurement method comparison and radiative implications. Environ. Sci. Technol. 54 (12):7156–64. doi:10.1021/acs.est.0c01475.
  • Martinsson, J., H.A. Azeem, M.K. Sporre, R. Bergstrom, E. Ahlberg, E. Ostrom, A. Kristensson, E. Swietlicki, and K.E. Stenstrom. 2017. Carbonaceous aerosol source apportionment using the Aethalometer model - evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 17 (6):4265–81. doi:10.5194/acp-17-4265-2017.
  • Naeher, L.P., M. Brauer, M. Lipsett, J.T. Zelikoff, C.D. Simpson, J.Q. Koenig, and K.R. Smith. 2007. Woodsmoke health effects: A review. Inhal Toxicol 19 (1):67–106. doi:10.1080/08958370600985875.
  • NYSERDA New York State Energy and Research Development Authority. 2016. New York State wood heat report: An energy, environmental, and market assessment, NYSERDA report 15-26, prepared by the Northeast states for coordinated air use management (NESCAUM), nyserda.ny.gov/publications.
  • Olson, M.R., M.V. Garcia, M.A. Robinson, P. Van Rooy, M.A. Dietenberger, M. Bergin, and J.J. Schauer. 2015. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions. J. Geophys. Res.: Atmos. 120 (13):6682–97. doi:10.1002/2014JD022970.
  • Pokhrel, R.P., N.L. Wagner, J.M. Langridge, D.A. Lack, T. Jayarathne, E.A. Stone, C.E. Stockwell, R.J. Yokelson, and S.M. Murphy. 2016. Parameterization of single-scattering albedo (SSA) and absorption angstrom exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmos. Chem. Phys. 16 (15):9549–61. doi:10.5194/acp-16-9549-2016.
  • Popovicheva, O., and V. Kozlov. 2020. Impact of combustion phase on scattering and spectral absorption of Siberian biomass burning: Studies in large aerosol chamber. Spie 11560:115604N. doi:10.1117/12.2575583.
  • Pratap, V., Q.J. Bian, S.A. Kiran, P.K. Hopke, J.R. Pierce, and S. Nakao. 2019. Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results. Atmos. Environ 199:224–32. doi:10.1016/j.atmosenv.2018.11.020.
  • Saleh, R., C.J. Hennigan, G.R. McMeeking, W.K. Chuang, E.S. Robinson, H. Coe, N.M. Donahue, and A.L. Robinson. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15):7683–93. doi:10.5194/acp-13-7683-2013.
  • Sandradewi, J., A.S.H. Prévôt, S. Szidat, N. Perron, M.R. Alfarra, V.A. Lanz, E. Weingartner, and U.R.S. Baltensperger. 2008. Using aerosol light abosrption measurements for the quantitative determination of wood burning and traffic emission contribution to particulate matter. Environ. Sci. Technol. 42 (9):3316–23. doi:10.1021/es702253m.
  • Thatcher, T.L., T.W. Kirchstetter, C.J. Malejan, and C.E. Ward. 2014. Infiltration of black carbon particles from residential woodsmoke into nearby homes. Open J. Air Pollut. 3 (4):111. doi:10.4236/ojap.2014.34011.
  • Titos, G., A. Del Aguila, A. Cazorla, H. Lyamani, J.A. Casquero-Vera, C. Colombi, E. Cuccia, V. Gianelle, G. Mocnik, A. Alastuey, et al. 2017. Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment. Sci. Total Environ 578:613–25. doi:10.1016/j.scitotenv.2016.11.007.
  • Wang, X., C.L. Heald, A.J. Sedlacek, S.S. de Sa, S.T. Martin, M.L. Alexander, T.B. Watson, A.C. Aiken, S.R. Springston, and P. Artaxo. 2016. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations. Atmos. Chem. Phys. 16 (19):12733–52. doi:10.5194/acp-16-12733-2016.
  • Wang, Y., P.K. Hopke, O.V. Rattigan, D.C. Chalupa, and M.J. Utell. 2012. Multiple-Year black carbon measurements and source apportionment using Delta-C in Rochester, New York. J. Air Waste Manage. Assoc. 62 (8):880–87. doi:10.1080/10962247.2012.671792.
  • Wang, Y.J., M. Hu, N. Xu, Y.H. Qin, Z.J. Wu, L.W. Zeng, X.F. Huang, and L.Y. He. 2020. Chemical composition and light absorption of carbonaceous aerosols emitted from crop residue burning: Influence of combustion efficiency. Atmos. Chem. Phys. 20 (22):13721–34. doi:10.5194/acp-20-13721-2020.
  • Xie, M.J., G.F. Shen, A.L. Holder, M.D. Hays, and J.J. Jetter. 2018. Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves. Environ. Pollut 240:60–67. doi:10.1016/j.envpol.2018.04.085.
  • Zhang, K.M., G. Allen, B. Yang, G. Chen, J. Gu, J. Schwab, D. Felton, and O. Rattigan. 2017. Joint measurements of PM2.5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments. Atmos. Chem. Phys. 17 (18):11441–52. doi:10.5194/acp-17-11441-2017.
  • Zhong, M., and M. Jang. 2014. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight. Atmos. Chem. Phys. 14 (3):1517–25. doi:10.5194/acp-14-1517-2014.