5,070
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Characterization of in-stack particulate emissions from residential wood hydronic heater appliances under different combustion conditions

, , , , , , , & show all
Pages 720-737 | Received 21 Oct 2021, Accepted 10 Jan 2022, Published online: 01 Jul 2022

References

  • Allen, G., and L. Rector. 2020. Characterization of residential woodsmoke PM2.5 in the Adirondacks of New York. Aerosol Air Qual. Res. 20 (11):2419–32. doi:10.4209/aaqr.2020.01.0005.
  • Annals of the ICRP. 1994. Human respiratory tract model for Radiological Protection. ICRP Publication, 52–54.
  • Bari, Md. A., G., Baumbach, J., Brodbeck, M., Struschka, B., Kuch, W., Dreher, & G., Scheffknecht. 2011. Characterisation of particulates and carcinogenic polycyclic aromatic hydrocarbons in wintertime wood-fired heating in residential areas. Atmos. Environ. 45 (40):7627–34. doi:10.1016/j.atmosenv.2010.11.053.
  • Bolling, A. K., J. Pagels, K. E. Yttri, L. Barregard, G. Sallsten, P. E. Schwarze, & C. Boman. 2009. Health effects of residential wood smoke particles: The importance of combustion conditions and physiochemical particle properties. Part. Fiber Toxicol. 6: 29. doi:10.1186/1743-8977-6-29
  • Boman, C., A. Nordin, D. Bostrom, and M. Ohman. 2004. Characterization of inorganic particulate matter from residential combustion of pelletized biomass fuels. Energy & Fuels 18 (2):338–48. doi:10.1021/ef034028i.
  • Chandrasekaran, S. R., J. R. Laing, T. M. Holsen, and P. K. Hopke Suresh Raja. 2011. Emission characterization and efficiency measurements of high-efficiency wood boilers. Energy & Fuels 25 (11):5015–21. doi:10.1021/ef2012563.
  • Chandrasekaran, S. R., J. R. Laing, T. M. Holsen, S. Raja, and P. K. Hopke. 2013. Residential-scale biomass boiler emissions and efficiency. Energy & Fuels 27 (8):4840–49. doi:10.1021/ef400891r.
  • Cohen, B. S., R. G. Sussman, and M. Lippmann. 1990. Ultrafine particle deposition in a human tracheobronchial cast. J. Aerosol Sci. Technol. 12 (4):1082–91. doi:10.1080/02786829008959418.
  • Corsini, E., M. Marinovich, and R. Vecch. 2019. Ultrafine particles from residential biomass combustion: A review on experimental data and toxicological response. Int J Mol Sci 20 (20):4992. doi:10.3390/ijms20204992.
  • Danielsen, P. H., E. V. Bräuner, L. Barregard, G. Sällsten, M. Wallin, R. Olinski, R. Rozalski, P. Møller, & S. Loft. 2008. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans. Mutat. Res. 642 (1–2):37–42. doi:10.1016/j.mrfmmm.2008.04.001.
  • Drinovec, L., G. Močnik, & P. Zotter. 2015. The ”dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Measur. Tech. 8 (5):1965–79. doi:10.5194/amt-8-1965-2015.
  • Forchhammer, L., et al. 2012. Controlled human wood smoke exposure: Oxidative stress, inflammation and microvascular function. Part Fibre Toxicol. 9 (1). doi:10.1186/1743-8977-9-7.
  • Gaegauf, C., U. Wieser, and Y. Macquat. 2001. Field investigation of nanoparticle emissions from various biomass combustion systems. Aerosol from Biomass Combustion. Zurich: International Seminar at 27 June 2001 in Zurich by IEA Bioenergy Task. 81–85.
  • Gunter, O., J. Ferin, R. Gelein, S. C. Soderholm, and J. Finkelstein. 1992. Role of aveolar macrophage in lung injury: Studies with ultrafine particles. Environ. Health Perspect. 97:193–99. doi:10.1289/ehp.97-1519541.
  • Hinds, W. C. 1982. Particle Size Statistics. In Aerosol technology: Properties, behavior, and measurement of airborne particles, 69–103. New York: John Wiley & Sons.
  • Hoek, G., G. Kos, R. Harrison, J. de Hartog, K. Meliefste, H. ten Brink, K. Katsouyanni, A. Karakatsani, M. Lianou, A. Kotronarou, & I. Kavouras. 2008. Indoor–outdoor relationships of particle number and mass in four European cities. Atmos. Environ. 42 (1):156–69. doi:10.1016/j.atmosenv.2007.09.026.
  • Hoek, G., K. Meliefste, J. Cyrys, M. Lewné, T. Bellander, M. Brauer, P. Fischer, U. Gehring, J. Heinrich, P. van Vliet, et al. 2002. Spatial variability of fine particle concentrations in three European areas. Atmos. Environ. 36 (25):4077–88. doi:10.1016/S1352-2310(02)00297-2.
  • Hueglin, C. H., C. H. Gaegauf, S. Kunzel, and H. Burtscher. 1997. Characterization of wood combustion particles: Morphology, mobility, and photoelectric activity. Environ.lSci. Technol. 31 (12):3439–47. doi:10.1021/es970139i.
  • Janssen, N. A. H., G. Hoek, M. Simic-Lawson, P. Fischer, L. V. Bree, H. T. Brink, M. Keuken, R. W. Atkinson, H. R. Anderson, B. Brunekreef, F. R. Ja Cassee. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 119 (12):1691–99. doi:10.1289/ehp.1003369.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38 (25):4183–95. doi:10.1016/j.atmosenv.2004.04.020.
  • Kinsey, J. S., A. Touati, T. L. Yelverton, J. Aurell, S. H. Cho, W. P. Linak, B. K. Gullett. 2012. Emissions characterization of residential wood-fired hydronic heater technologies. Atmos. Environ. 63:239–49. doi:10.1016/j.atmosenv.2012.08.064.
  • Kuula, J. K., H. Kuuluvainen, J. V. Niemi, E. Saukko, H. Portin, A. Kousa, M. Aurela, T. Rönkkö, & H. Timonen. 2019. Long-term sensor measurements of lung deposited surgace area of particulate matter emitted from local vehicular and residential wood combustion sources. Aerosol Sci. Technol. 54 (2):190–202. doi:10.1080/02786826.2019.1668909
  • Lighty, J. S., J. M. Veranth, and A. F. Sarofim. 2000. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc. 50 (9):1565–618. doi:10.1080/10473289.2000.10464197.
  • Lillieblad, L., A. Szpila, M. Strand, J. Pagels, K. Rupar-Gadd, A. Gudmundsson, E. Swietlicki, M. Bohgard, M. Sanati. 2004. Boiler operation influence on the emissions of submicrometer-sized particles and polycyclic aromatic hydrocarbons from biomass-fired grate boilers. Energy & Fuels. 18 (2):410–17. doi:10.1021/ef0300444.
  • Naeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, & K. R. Smith. 2007. Woodsmoke health effects: A review. Inhal. Toxicol. 19 (1):67–106. doi:10.1080/08958370600985875.
  • New York State Energy Research and Development Authority. “Patterns and trends new york state energy profiles: 2002-2016.” 2019.
  • New York State Energy Research and Development Authority (NYSERDA). “Assessment of carbonaceous PM2.5 for New York and the region.” 2008.
  • New York State Energy Research and Development Authority (NYSERDA) and Northeast States for Coordinated Air Use Management (NESCAUM). “New York state wood heat report: An energy, environmental, and market assessment final report.” 2016.
  • New York State Energy Research and Development Authority (NYSERDA) and Northeast States for Coordinated Air Use Management (NESCAUM). “Interim report: Development of an integrated duty-cycle test method for cordwood stoves.” 2020.
  • Noonan, C. W., T. J. Ward, and E. O. Semmens. 2015. Estimating the Number of Vulnerable People in the United States Exposed to Residential Wood Smoke. Environ. Health Perspect. 123 (2): A30. doi:10.1289/ehp.1409136
  • Northeast States for Coordinated Air Use Management. “Test Methods.” Northeast States for Coordinated Air Use Management. 2021 August. https://www.nescaum.org/documents/bnl-hydronic-heater-test-method.pdf/ .
  • Obaidullah, M., S. Bram, and J. DeRuyck. 2019. Measurements of particle emissions and size distributions from a modern residential pellet stove under laboratory conditions. Int. J. Sys. Appl. Eng. Dev. 13:1–9.
  • Obaidullah, M., S. Bram, V. K. Verma, and J. DeRuyck. 2012. A review on particle emissions from small scale biomass combustion. Int. J. Renew. Energy Res. 2.
  • Obernberger, I., T. Brunner, and G. Barnthaler. 2007. “Fine particulate emissions from modern Austrian small-scale biomass combustion plants.” 15th European Biomass Conference & Exhibition. Berlin, 1546–57.
  • Obernberger, I., T. Brunner, and M. Jöller. 2001. Characterisation and formation of aerosols and fly-ashesfrom fixed bed biomass combustion. Aerosol from Biomass Combustion, 69–74. Zurich: IEA Bioenergy Agreement.
  • Penn, S. L., S. Arunachalam, M. Woody, W. Heiger-Bernays, Y. Tripodis, and J. I. Levy. 2017. Estimating state-specific contributions to PM2.5- and O3-Related health burden from residential combustion and electricity generating unit emissions in the United States. Environ. Health Perspect. 125 (3):324–32. doi:10.1289/EHP550.
  • Rich, D. Q., et al. 2018. Daily land use regression estimated woodsmoke and traffic pollution concentrations and the triggering of ST-elevation myocardial infarction: A case-crossover study. Air Quality Atmos. Health 11 (2):239–44. doi:10.1007/s11869-017-0537-1.
  • Rogalsky, D. K., P. Mendola, T. A. Metts, and W. J. Martin II. 2014. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels. Environ. Health Perspect. 122 (8):806–10. doi:10.1289/ehp.1306709.
  • Schwartz, C., A. Kocbach Bølling, and C. Carlsten. 2020. Controlled human exposures to wood smoke: A synthesis of the evidence. Part Fibre Toxicol. 17 (1). doi:10.1186/s12989-020-00375-x.
  • Smith, W. B. 2014. Evaluation of wood fuel moisture measurement accuracy for cordwood-fired advanced hydronic heaters. NYSERDA.
  • Trent, A. 2006. Smoke particulate monitors: 2006 update. Missoula: USDA Forest Service Technology Development Program.
  • Trojanowski, R., and V. Fthenakis. 2019. Nanoparticle emissions from residential wood combustion: A critical literature review, characterization, and recommendations. Renew. Sustain. Energy Rev. 103:515–28. doi:10.1016/j.rser.2019.01.007.
  • Trojanowski, R., J. Lindberg, T. Butcher, and V. Fthenakis. Search wood stove database (central heaters). Accessed April 20, 2020. https://cfpub.epa.gov/oarweb/woodstove/index.cfm?fuseaction=app.searchwh.
  • Trojanowski, R., J. Lindberg, T. Butcher, and V. Fthenakis. 2022. Realistic operation of two residential cordwood fired appliances part 1: Particulate mass and gaseous emissions. Review.
  • United States Environmental Protection Agency. 2009. Integrated science assessment for particulate matter (final report). Washington D.C.: U.S. EPA.
  • United States Environmental Protection Agency. “Standards of performance for new residential wood heaters, new residential hydronic heaters and forced-Air furnaces.” 2015.
  • United States Environmental Protection Agency. “Test method 28 OWHH for measurement of particulate emissions and heating.” 2017.
  • United States Environmental Protection Agency. “Integrated science assessment (ISA) for particulate matter (final report, 2019).” 2019.
  • Wichenthal, S., et al. 2017. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology. 28 (3):329–37. doi:10.1097/EDE.0000000000000636.
  • Wiinikka, H., and R. Gebart. 2005. The influence of fuel type on particle emissions in combustion of biomass pellets. Combustion Sci. Technol. 177 (4):741–63. doi:10.1080/00102200590917257.
  • World Health Organization. 2012. The health effects of black carbon. Copenhagen, Denmark.