4,916
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Realistic operation of two residential cordwood-fired outdoor hydronic heater appliances—Part 3: Optical properties of black and brown carbon emissions

, , , , , , & show all
Pages 777-790 | Received 19 Oct 2021, Accepted 06 Mar 2022, Published online: 01 Jul 2022

References

  • Allen, G. A., J. Lawrence, and P. Koutrakis. 1999. Field validation of a semi-continuous method for aerosol black carbon (aethalometer) and temporal patterns of summertime hourly black carbon measurements in southwestern PA. Atmos. Environ. 33(5): 817–823.
  • Allen, G., and L. Rector. 2020. Characterization of residential woodsmoke PM2.5 in the Adirondacks of New York. Aerosol Air Qual. Res. 20(11): 2419–2432.
  • Alves, C. A. 2018. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 199: 159–185.
  • Bari, M. A., G. Baumbach, J. Brodbeck, M. Struschka, B. Kuch, W. Dreher, and G. Scheffknecht. 2011. Characterisation of particulates and carcinogenic polycyclic aromatic hydrocarbons in wintertime wood-fired heating in residential areas. Atmos. Environ. 45: 7627–7634.
  • Blanchard, C. L., S. L. Shaw, E. J. Edgerton, and J. J. Schwab. 2021. Ambient PM2.5 organic and elemental carbon in New York City: changing source contributions during a decade of large emissions reductions. J. Air Waste Manage. Assoc. 71: 995–1012.
  • Boman, C., A. Nordin, D. Bostrom, and M. Ohman. 2004. Characterization of inorganic particulate matter from residential combustion of pelletized biomass fuels. Energy Fuels 18: 338–348.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, et al. 2013. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res.: Atmos. 118: 5380–5552.
  • Briggs, N. J., and C. M. Long. 2016. Critical review of black carbon and elemental carbon source apportionment in Europe and United States. Atmos. Environ. 144: 409–427.
  • Brown, K. W., J. A. Sarnat, H. H. Suh, B. A. Coull, J. D. Spengler, and P. Koutrakis. 2008. Ambient site, home outdoor, and home indoor particulate concentrations as proxies of personal exposures. J. Environ. Monit. 10: 1041–51.
  • Chow, J. C., J. G. Watson, D. H. Lowenthal, L.-W. Antony Chen, and N. Motallebi. 2011. PM2.5 source profiles for black and organic carbon emission inventories. Atmo. Environ. 45: 5407–5414.
  • Di Biagio, C., P. Formenti, M. Cazaunau, E. Pangui, N. Marchand, and J.-F. Doussin. 2017. Aethalometer multiple scattering correction Cref for mineral dust aerosols. Atmos. Meas. Tech. 10: 2923–2939.
  • Dockery, D. W., C. A. Pope III, X. Xiping, D. S. John, J. H. Ware, M. E. Fay, B. G. Ferris Jr., and F. E. Speizer. 1993. An association between air pollution and mortality in Six U.S. cities. The New England J. Med. 329: 1753–59.
  • Drinovec, L., G. Mocnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, et al. 2015. “The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation”. Atmos. Meas. Tech.s 8: 1965–1979
  • Favez, O., I. El Haddad, C. Piot, A. Bor´eave, E. Abidi, N. Marchand, J.-L. Jaffrezo, et al. 2010. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos. Chem. Phys. Discuss. 10: 559–613.
  • Fine, P., M. Glen, R. Cass, and R. T. S. Bernd 2001. Chemical Characterization of fine particle emissions from fireplace combustion of woods grown in the Northeastern United States. Environ. Sci. Technol. 35(13): 2665–2675.
  • Grahame, T. J., R. Klemm, and R. B. Schlesinger. 2014. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 64: 620–660.
  • Hays, M. D., B. Gullett, C. King, and J. Robinson. 2011. Characterization of carbonaceous aerosols emitted from outdoor wood boilers. Energy Fuels 25: 5632–5638.
  • Hays, M. D., J. Kinsey, I. George, W. Preston, C. Singer, and B. Patel. 2019. Carbonaceous particulate matter emitted from a pellet-fired biomass boiler. Atmosphere 10: 536–550.
  • Healy, R. M., U. Sofowote, Y. Su, J. Debosz, M. Noble, C.-H. Jeong, J. M. Wang, et al. 2017. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmos. Environ. 161: 34–47.
  • Helin, A., A. Virkkula, J. Backman, L. Pirjola, O. Sippula, P. Aakko-Saksa, S. Väätäinen, et al. 2021. Variation of absorption Ångström exponent in aerosols from different emission sources. J. Geophys. Res. Atmos. 126: e2020JD034094.
  • Janssen, N. A. H., G. Hoek, M. Simic-Lawson, P. Fischer, L. van Bree, H. ten Brink, M. Keuken, et al. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 119: 1691–1699.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38: 4183–4195.
  • Karanasiou, A., M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Mocnik, O. Favez, and T. A. J. Kuhlbusch. 2015. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air. Atmosp. Meas.Technol. Discuss. 8: 9649–9712.
  • Kinsey, J. S., A. Touati, T. L. B. Yelverton, J. Aurell, S.-H. Cho, W. P. Linak, and B. K. Gullett. 2012. Emissions characterization of residential wood-fired hydronic heater technologies. Atmos. Environ. 63: 239–249.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. D21208.
  • Koehler, K., N. Good, A. Wilson, A. Mölter, B. F. Moore, T. Carpenter, J. L. Peel, and J. Volkens. 2019. The Fort Collins commuter study: variability in personal exposure to air pollutants by microenvironment. Indoor Air 29: 231–241
  • Kortelainen, M., J. Jokiniemi, P. Tiitta, J. Tissari, H. Lamberg, J. Leskinen, J. Grigonyte-Lopez Rodriguez, et al. 2018. “Time-resolved chemical composition of small-scale batch combustion emissions from various wood species”. Fuel 233: 224–236.
  • Lillieblad, L., A. Szpila, M. Strand, J. Pagels, K. Rupar-Gadd, A. Gudmundsson, E. Swietlicki, M. Bohgard, and M. Sanati. 2004. Boiler operation influence on the emissions of submicrometer-sized particles and polycyclic aromatic hydrocarbons from biomass-fired grate boilers. Energy Fuels 524: 410–417.
  • Lindberg, J., N. Vitillo, M. Wurth, S. Tang, G. La Duke, B. P. Frank, P. Mason Fritz, R. Trojanowski, T. Butcher, and D. Mahajan. 2022. Realistic operation of two residential cordwood fired appliances - Part 2: Particle Number and Size. Review.
  • Liu, Y., C. Yan, and M. Zheng. 2018. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 618: 531–541
  • Martinsson, J., A. C. Eriksson, I. Elbæk Nielsen, V. Berg Malmborg, E. Ahlberg, C. Andersen, R. Lindgren, et al. 2015. Impacts of combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol. Environ. Sci. Technol. 49: 14663–14671−.
  • Md. Obaidullah, S. B., V. K. Verma, and J. De Ruyck. 2012. A review on particle emissions from small scale biomass combustion. Int. J. Renew. Energy Res. 2: 147–59.
  • Mousavi, A., M. H. Sowlat, C. Lovett, M. Rauber, S. Szidar, R. Bof, A. Borgini, C. De Marco, A. A. Ruprecht, and C. Sioutas. 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 203: 252–261
  • Northeast States for Coordinated Air Use Management. 2021. Test Methods. Northeast States for Coordinated Air Use Management. August 2021. https://www.nescaum.org/documents/bnl-hydronic-heater-test-method.pdf/
  • Obernberger, I., T. Brunner, and G. Barnthaler. 2007. Fine particulate emissions from modern Austrian small-scale biomass combustion plants. 15th European Biomass Conference & Exhibition. Berlin, 1546–57.
  • Peter, Z., H. Herich, M. Gysel, I. El-Haddad, Y. Zhang, G. Moˇcnik, C. Hüglin, U. Baltensperger, S. Szidat, and A. S. H. Prévôt. 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phy. 17: 4229–49.
  • Prevot, A. S. H., J. Sandradewi, S. Szidat, N. Perron, M. R. Alfarra, V. A. Lanz, E. Weingartner, and U. Baltensperger. 2008. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Eviron. Sci. Technol. 42: 3316–3323.
  • Rajesh, T. A., and S. Ramachandran. 2017. Characteristics and source apportionment of black carbon aerosols over an urban site. Evirnon. Sci. Pollut. Res. 24: 8411–24
  • Rigler, M., L. Drinovec, G. Lavric, A. Vlachou, A. S. H. Prévôt, J. Luc Jaffrezo, I. Stavroulas, et al. 2020. The new instrument using a TC–BC (total carbon–black carbon) method for the online measurement of carbonaceous aerosols. Atmos. Meas. Technol. 13: 4333–4351.
  • Rogge, W. F., L. M. Hildemann, M. A. Mazurek, and G. R. Cass. 1998. Sources of fine organic aerosol. 9. Pine, Oak, and synthetic log combustion in residential fireplaces. Environ. Sci. Technol. 32: 13–22.
  • Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13: 7683–93.
  • Saleh, R., M. Marks, J. Heo, P. J. Adams, N. M. Donahue, and A. L. Robinson. 2015. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass burning and biofuel burning emissions. J. Geophys. Res.: Atmos. 129: 10285–10296.
  • Sandradewi, J., A. S. H. Prevot, M. R. Alfarra, S. Szidat, M. N. Wehrli, M. Ruff, S. Weimer, et al. 2008. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. Discuss. 8: 8091–118.
  • Schmidl, C. 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos. Environ. 45: 7443–7454
  • Schnaiter, M., H. Horvath, O. Mohler, K.-H. Naumann, H. Saathoff, and O. W. Schock. 2003. UV-VIS-NIRspectral optical properties of soot and soot-containing aerosols. Aerosol Science 34: 1421–1444
  • Schwartz, J., and D. W. Dockery. 1992. Particulate air pollution and daily mortality in Steubenville, Ohio. Am. J. Epidemiol. 135: 12–19.
  • Shen, G. 2013. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning. J. Environ. Sci. (China) 25: 511–19.
  • Shen, G. 2013a. The influence of fuel moisture, charge size, burning rate and air ventilation conditions on emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci. (China) 25: 1808–16.
  • Smith, W. B. 2014. Evaluation of wood Fuel moisture measurement accuracy for cordwood-fired advanced hydronic heaters. NYSERDA.
  • Trojanowski, R., J. Lindberg, T. Butcher, and V. Fthenakis. 2022. Realistic operation of two residential cordwood fired appliances Part 1: Particulate mass and gaseous emissions. Review.
  • van Loo, S., and J. Koppejan. 2008. Chapter 4: domestic wood-burning appliances. In The handbook of biomass combustion and cofiring, edited by Sjaak van Loo and Jaap Koppejan, 112–33. Sterling, VA: Earthscan.
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. A. C. Tarelho, D. Custódio, C. Colombi, V. Gianelle, A. Sanchez de la Campa, and C. A. Alves. 2015. Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion. Atmos. Res. 166: 92–100.
  • Weingartener, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger. 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. Aerosol Sci. 34: 1445–1463
  • WHO Regional Office for Europe. 2012. Health effects of black carbon. Copenhagen, Denmark.
  • Wiinikka, H., and R. Gebart. 2005. The influence of fuel type on particle emissions in combustion of biomass pellets. Combus. Sci. Technol. 177: 741–763.
  • Williams, R. D., and L. D. Knibbs. 2016. Daily personal exposure to black carbon: A pilot study. Atmos. Environ. 132: 296–299.
  • Zanatta, M., M. Gysel, N. Bukowieki, T. Muller, E. Weingartner, H. Aerskoug, M. Fiebig, et al. 2017. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ. 145: 346–364.