4,857
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Realistic operation of two residential cordwood-fired outdoor hydronic heater appliances—Part 2: Particle number and size

, , , , , , , , & show all
Pages 762-776 | Received 19 Oct 2021, Accepted 18 Mar 2022, Published online: 01 Jul 2022

References

  • Ahmadi, M., J. Minot, G. Allen, and L. Rector. 2020. Investigation of real-life operating patterns of wood-burning appliances using stack temperature data. Journal of the Air & Waste Management Association 70 (4):393–409. doi:10.1080/10962247.2020.1726838.
  • Allen, G., P. J. Miller, L. J. Rector, M. Brauer, and J. U. Su. 2011. Characterization of valley winter woodsmoke concentrations in northern NY using highly time-resolved measurements. Aerosol and Air Quality Research 11 (5):519–30. doi:10.4209/aaqr.2011.03.0031.
  • Allen, G., and L. Rector. 2020. Characterization of Residential Woodsmoke PM2.5 in the Adirondacks of New York. Aerosol and Air Quality Research. 2419–32.
  • Berry, C. “Increase in wood as main source of household heating most notable in the Northeast.” EIA. 17 March 2014. https://www.eia.gov/todayinenergy/detail.php?id=15431.
  • Gibbs, R., and T. Butcher. 2010. Staged combustion biomass boilers: Linking high-efficiency combustion technology to regulatory test methods. Albany: New York State Energy Research and Development Authority (NYSERDA).
  • Gonçalves, C., C. Alves, A. P. Fernandes, C. Monteiro, L. Tarelho, M. Evtyugina, C. Pio. 2011. Organic compounds in PM2.5 emitted from fireplace and wood stove combustion of typical Portuguese wood species. Atmospheric Environment. 45 (27):4533–45. doi:10.1016/j.atmosenv.2011.05.071.
  • Hays, M. D., N. D. Smith, J. Kinsey, Y. Dong, and P. Kariher. 2003. Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorption—GC/MS. Journal of Aerosol Science 34 (8):1061–84. doi:10.1016/S0021-8502(03)00080-6.
  • Hinds, W. C. 1982. Particle size statistics. In Aerosol technology: Properties, behavior, and measurement of airborne particles, ed. W. C. Hinds, 69–103. New York: John Wiley & Sons.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and pellets. Atmospheric Environment 38 (25):4183–95. doi:10.1016/j.atmosenv.2004.04.020.
  • Kinsey, J. S., A. Touati, T. L. B. Yelverton, J. Aurell, S.-H. Cho, W. P. Linak, B. K. Gullett. 2012. Emissions characterization of residential wood-fired hydronic heater technologies. Atmospheric Environment 63:239–49. doi:10.1016/j.atmosenv.2012.08.064.
  • Kleeman, M. J., J. J. Schauer, and G. R. Cass. 1999. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environmental Science & Technology. 33:3516–23.
  • Kocbach Bølling, A., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E., Boman, C. 2009. Health effects of residential wood smoke particles: the importance of combustion conditions and physiochemical particle properties. Particle and Fiber Toxicology 6 (6):29. doi:10.1186/1743-8977-6-29. PMID: 19891791; PMCID: PMC2777846.
  • Kotchenruther, R. A. 2016. Source apportionment of PM2.5 at multiple Northwest U.S. sites: Assessing regional winter wood smoke impacts from residential wood combustion. Atmospheric Environment. 142:210–19. doi:10.1016/j.atmosenv.2016.07.048.
  • Lillieblad, L., Szpila, A., Strand, M., Pagels, J., Rupar-Gadd, K., Gudmundsson, A., and Sanati, M. 2004. Boiler operation influence on the emissions of submicrometer-sized particles and polycyclic aromatic hydrocarbons from biomass-fired grate boilers. Energy & Fuels. 18:410–17.
  • Lindberg, J., Wurth, M., Frank, B., Tang, S., LaDuke, G., Trojanowski, R., Butcher, T., Mahajan, D. 2022. Realistic operation of two residential cordwood fired appliances - Part 3: Black and brown carbon emissions. Review.
  • Naeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, K. R. Smith. 2007. Woodsmoke health effects: A review. Inhalation Toxicology. 19 (1):67–106. doi:10.1080/08958370600985875.
  • Noonan, C. W., T. J. Ward, and E. O. Semmens. 2015. Estimating the number of vulnerable people in the United States exposed to residential wood smoke. Environmental Health Perspectives 123 (2):A30. doi:10.1289/ehp.1409136. PMID: 25642637; PMCID: PMC4314255.
  • NYSERDA. 2008. “Assessment of Carbonaceous PM2.5 for New York and the region.”
  • NYSERDA. 2012. “Environmental, Energy Market, and Health Characterization of Wood-Fired Hydronic Heater Technologies.”
  • NYSERDA. 2016. “New York State: Wood heat report: An energy, environmental, and market assessment.”
  • Obernberger, I., T. Brunner, and G. Barnthaler. 2007. “Fine particulate emissions from modern Austrian small-scale biomass combustion plants.” 15th European Biomass Conference & Exhibition Berlin, 1546–57.
  • Pagels, J., A. Gudmundsson, E. Gustavsson, L. Asking, and M. Bohgard. 2005. Evaluation of aerodynamic particle sizer and electrical low-pressure impactor for unimodal and bimodal mass-weighted size distributions. Aerosol Science and Technology 39 (9):871–87. doi:10.1080/02786820500295677.
  • Penn, S. L., S. Arunachalam, M. Woody, W. Heiger-Bernays, Y. Tripodis, and J. I. Levy. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environmental Health Perspectives 125 (3):324–32. doi:10.1289/EHP550.
  • Pettersson, E., C. Boman, R. Westerholm, D. Bostrom, and A. Nordin. 2011. Stove performance and emission characteristics in residential wood log and pellet combustion, part 2: Wood stove. Energy and Fuels 25 (1):315–25. doi:10.1021/ef1007787.
  • Rector, L., G. Allen, and P. Johnson. 2006. Assessment of outdoor wood-fired boilers. Boston, MA: Northeast States for Coordinated Air Use Management (NESCAUM).
  • Rector, L., P. J. Miller, S. Snook, and M. Ahmadi. 2017. Comparative emissions characterization of a small-scale wood chip-fired boiler and an oil-fired boiler in a school setting. Biomass and Bioenergy 107:254–60. doi:10.1016/j.biombioe.2017.10.017.
  • Schmidl, C., M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca, C. Ramirez-Santa Cruz, M. Handler, G. Peng, H. Bauer, H. Puxbaum, et al. 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmospheric Environment. 45(39):7443–54. doi:10.1016/j.atmosenv.2011.05.006.
  • Schrieber, J., R. Chinery, J. Snyder, E. Kelly, E. Valerio, and E. Acosta. 2005. Smoke gets in your lungs: outdoor wood boilers in New York State. https://shwec.engr.wisc.edu/wp-content/uploads/sites/711/2015/08/NYRptRev08.pdf
  • Sehlstedt, M., R. Dove, C. Boman, J. Pagels, E. Swietlicki, J. Löndahl, R. Westerholm, J. Bosson, S. Barath, A. F. Behndig, et al. 2010. Antioxidant airway responses following experimental exposure to wood smoke. Particle and Fiber Toxicology 7 (1). doi: 10.1186/1743-8977-7-21.
  • Shen, G., M. Xue, S. Wei, Y. Chen, B. Wang, R. Wang, H. Shen, W. Li, Y. Zhang, Y. Huang, et al. 2013. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning. Journal of Environmental Sciences. 25 (3):511–19. doi:10.1016/S1001-0742(12)60191-0.
  • Sigsgaard, T., B. Forsberg, I. Annesi-Maesano, A. Blomberg, A. Bølling, C. Boman, J. Bønløkke, M. Brauer, N. Bruce, M.-E. Héroux, et al. 2015. Health impacts of anthropogenic biomass burning in the developed world. European Respiratory Society. 46(6):1577–88. doi:10.1183/13993003.01865-2014.
  • Squizzato, S., Masiol, M., Emami, F., Chalupa, D. C., Utell, M. J., Rich, D. Q., & Hopke, P. K. 2019. Long-term changes of source apportioned particle number concentrations in a metropolitan area of the Northeastern United States. Atmosphere 10:27. doi:10.3390/atmos10010027.
  • Trojanowski, R., and V. Fthenakis. 2019. Nanoparticle emissions from residential wood combustion: A critical literature review, characterization, and recommendations. Renewable and Sustainable Energy Reviews 103:515–28. doi:10.1016/j.rser.2019.01.007.
  • Trojanowski, R., Lindberg, J., Butcher, T., Fthenakis, V. 2022. Realistic operation of two residential cordwood fired appliances - Part 1: Particulate mass and gaseous emissions.
  • United States Census Bureau. “American Housing Survey (AHS).” 2 July 2021. https://www.census.gov/programs-surveys/ahs.html.
  • U.S. EPA. 2017. “Test method 28 OWHH for measurement of particulate emissions and heating”.
  • U.S. EPA. 1998. “Residential wood combustion technology review volume 1. Technical Report.”
  • U.S. EPA. 2019. “Integrated Science Assessment (ISA) for particulate matter (final report, 2019).”
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. A. C. Tarelho, D. Custódio, C. Colombi, V. Gianelle, A. Sanchez de la Campa, C. A. Alves. 2015a. Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion. Atmospheric Research 166:92–100. doi:10.1016/j.atmosres.2015.06.016.
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. Tarelho, and C. A. Alves. 2015b. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Processing Technology 131:182–92. doi:10.1016/j.fuproc.2014.11.021.
  • Wang, Y., P. K. Hopke, X. Xia, O. Rattigan, D. C. Chalupa, and M. J. Utell. 2012. Source apportionment of airborne particulate matter using inorganic and organic species as tracers. Atmospheric Environment 55:525–32. doi:10.1016/j.atmosenv.2012.03.073.
  • Ward, T., B. Trost, J. Conner, J. Flanagan, and R. K. M. Jayanty. 2012. source apportionment of PM2.5 in a subarctic airshed - fairbanks, Alaska. Aerosol and Air Quality Research 12 (4):536–43. doi:10.4209/aaqr.2011.11.0208.
  • Weichenthal, S., R. Kulka, E. Lavigne, D. van Rijswijk, M. Brauer, P. J. Villeneuve, D. Stieb, L. Joseph, R. T. Burnett. 2017. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology. 28 (3):329–37. doi:10.1097/EDE.0000000000000636.
  • Win, K. M., and T. Persson. 2014. Emissions from residential wood pellet boilers and stove characterized into start-up, steady operation, and stop emissions. Energy & Fuels 28(4):2496–505.