625
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Summary of PM2.5 measurement artifacts associated with the Teledyne T640 PM Mass Monitor under controlled chamber experimental conditions using polydisperse ammonium sulfate aerosols and biomass smoke

ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 295-312 | Received 29 Sep 2022, Accepted 10 Jan 2023, Published online: 13 Mar 2023

References

  • Aguilera, R., T. Corringham, A. Gershunov, and T. Benmarhnia. 2021. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 12 (1):1493. doi:10.1038/s41467-021-21708-0.
  • AIRNow. Accessed September, 2022. https://www.airnow.gov.
  • Allen, G., P. Babich, and R. Poirot. 2004. Evaluation of a new approach for real time assessment of Wood Smoke PM. Proceedings of Air & Waste Management Association Visibility Specialty Conference on Regional and Global Perspectives on Haze: Causes, Consequences and Controversies, Asheville, NC, October.
  • Bi, J., L. Wallace, J. A. Sarnat, and Y. Liu. 2021. Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data. Environ. Pollut. 276:116793. doi:10.1016/j.envpol.2021.116763.
  • Bi, J., A. Wildani, H. H. Chang, and Y. Liu. 2020. Incorporating low-cost sensor measurements into high-resolution PM2.5 modeling at a large spatial scale. Environ. Sci. Technol. 54 (4):2152–62. doi:10.1021/acs.est.9b06046.
  • Cappa, C. D., X. Zhang, L. M. Russell, S. Collier, A. K. Y. Lee, C. -L. Chen, R. Betha, S. Chen, J. Liu, D. J. Price, et al. 2019. Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. J. Geophys. Res.: Atmos. 124 (3):1550–77. doi:10.1029/2018JD029501.
  • Cheng, Y.-H., Y.-C. Huang, A. S. Pipal, M.-Y. Jian, and Z.-S. Liu. 2022. Source apportionment of black carbon using light absorption measurement and impact of biomass burning smoke on air quality over rural central Taiwan: A yearlong study. Atmos. Pollut. Res. 13 (1):13. doi:10.1016/j.apr.2021.101264.
  • Chow, F. K., K. A. Yu, A. Young, E. James, G. A. Grell, I. Csiszar, M. Tsidulko, S. Freitas, G. Pereira, L. Giglio, et al. 2022. High-resolution smoke forecasting for the 2018 camp fire in California. Bull. Am. Meteorol. 103 (6):E1531–52. Accessed September 13, 2022. https://journals.ametsoc.org/view/journals/bams/103/6/BAMS-D-20-0329.1.xml.
  • Christian, T. J., B. Kleiss, R. J. Yokelson, R. Holzinger, P. J. Crutzen, W. M. Hao, B. H. Saharjo, and D. E. Ward. 2004. Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC- MS/FID/ECD. J. Geophys. Res.; Atmos. 109 (D2). doi:10.1029/2003JD003874.
  • Curtis, D. B., M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber. 2007. Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles. Atmos. Environ. 41 (22):4748–58. doi:10.1016/j.atmosenv.2007.03.020.
  • Drinovec, L., G. Moˇcnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, et al. 2015. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 8 (5):1965–79. doi:10.5194/amt-8-1965-2015.
  • Foster, W. W. 1959. Attenuation of light by wood smoke. Br. J. Appl. Phys. 10 (9):416. doi:10.1088/0508-3443/10/9/309.
  • Franchin, A., D. L. Fibiger, L. Goldberger, E. E. McDuffie, A. Moravek, C. C. Womack, E. T. Crosman, K. S. Docherty, W. P. Dube, S. W. Hoch, et al. 2018. Airborne and ground-based observations of ammonium-nitrate dominated aerosols in a shallow boundary layer during intense winter pollution episodes in northern Utah. Atmos. Chem. Phys. 18 (23):17259–76. doi:10.5194/acp-18-17259-2018.
  • Gan, R. W., B. Ford, W. Lassman, G. Pfister, A. Vaidyanathan, E. Fisher, J. Volckens, J. R. Pierce, and S. Magzamen. 2017. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. GeoHealth 1 (3):122–36. doi:10.1002/2017GH000073.
  • Garg, S., B. P. Chandra, V. Sinha, R. Sarda-Esteve, V. Gros, and B. Sinha. 2016. Limitation of the use of the absorption angstrom exponent for source apportionment of equivalent black carbon: A case study from the North West Indo-Gangetic Plain. Environ. Sci. Technol. 50 (2):814–24. doi:10.1021/acs.est.5b03868.
  • Ghio, A. J., J. M. Soukup, M. Case, L. A. Dailey, J. Richards, J. Berntsen, R. B. Devlin, S. Stone, and A. Rappold. 2012. Exposure to wood smoke particles produces inflammation in healthy volunteers. Occup Environ Med 69 (3):170–75. doi:10.1136/oem.2011.065276.
  • Grimm, H., and D. J. Eatough. 2009. Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J. Air Waste Manag. Assoc. 59 (1):101–07. doi:10.3155/1047-3289.59.1.101.
  • Gupta, P., P. Doraiswamy, R. Levy, O. Pikelnaya, J. Maibach, B. Feenstra, A. Polidori, F. Kiros, and K. C. Mills. 2018. Impact of California fires on local and regional air quality: The role of a low-cost sensor network and satellite observations. GeoHealth 2 (6):172–81. doi:10.1029/2018GH000136.
  • Guyot, A., J. Pudashine, R. Uijlenhoet, A. Protat, V. R. N. Pauwels, V. Louf, and J. P. Walker. 2021. Wildfire smoke particulate matter concentration measurements using radio links from cellular communication networks. AGU Adv. 2 (1). doi:10.1029/2020AV000258.
  • Hagler, G., T. Hanley, B. Hassett-Sipple, R. Vanderpool, M. Smith, J. Wilbur, T. Wilbur, T. Oliver, D. Shand, V. Vidacek, et al. 2022. Evaluation of two collocated federal equivalent method PM2.5 instruments over a wide range of concentrations in Sarajevo, Bosnia and Herzegovina. Atmos. Pollut. Res. 13 (4):101374. doi:10.1016/j.apr.2022.101374.
  • Healy, R. M., J. M. Wang, C. -H. Jeong, A. K. Y. Lee, M. D. Willis, E. Jaroudi, N. Zimmerman, N. Hilker, M. Murphy, S. Eckhardt, et al. 2015. Light-absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources. J. Geophys. Res.: Atmos. 120 (13):6619–33. doi:10.1002/2015JD023382.
  • Heaney, A., J. D. Stowell, J. C. Liu, R. Basu, M. Marlier, and P. Kinney. 2021. Impacts of fine particulate matter for wildland fire smoke on respiratory and cardiovascular health in California. GeoHealth 6 (6). doi:10.1029/2021GH000578.
  • Holder, A. L., A. K. Mebust, L. A. Maghran, M. R. McGown, K. E. Stewart, D. M. Vallano, R. A. Elleman, and K. R. Baker. 2020. Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke. Sensors 20 (17):4796. doi:10.3390/s20174796.
  • Hosseini, S., L. Qi, D. Cocker, D. Weise, A. Miller, M. Shrivastava, J. Miller, S. Mahalingam, M. Princevac, and H. Jung. 2010. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. Discuss. 10:8065–76. doi:10.5194/acpd-10-8595.
  • Kelleher, S., C. Quinn, D. Miller-Lionberg, and J. Volckens. 2018. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke. Atmos. Meas. Tech. 11 (2):1087–97. doi:10.5194/amt-11-1087-2018.
  • Kelly, K. E., J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, and A. Butterfield. 2017. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 221:491–500. doi:10.1016/j.envpol.2016.12.039.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21):D21208. doi:10.1029/2004JD004999.
  • Krug, J., R. Long, M. Colón, A. Habel, S. Urbanski, and M. S. Landis. 2021. Evaluation of small form factor, filter-based PM2.5 samplers for temporary non-regulatory monitoring during wildland fire smoke events. Atmos. Environ. 265:118718. doi:10.1016/j.atmosenv.2021.118718.
  • Lack, D. A., M. S. Richardson, D. Law, J. M. Langridge, C. D. Cappa, R. J. McLaughlin, and D. M. Murphy. 2012. Aircraft instrument for comprehensive characterization of aerosol optical properties, Part 2: Black and brown carbon absorption and absorption enhancement measured with photo acoustic spectroscopy. Aerosol. Sci. Technol. 46 (5):555–68. doi:10.1080/02786826.2011.645955.
  • Laing, J. R., and D. A. Jaffe. 2019. Wildfires and PM concentrations in the Western United. EM, June.
  • Landis, M. S., E. S. Edgerton, E. M. White, G. R. Wentworth, A. P. Sullivan, and A. M. Dillner. 2018. The impact of the 2016 Fort McMurray horse river wildfire on ambient air pollution levels in the Athabasca oil sands region, Alberta, Canada. Sci. Total Environ. 618:1665–76. doi:10.1016/j.scitotenv.2017.10.008.
  • Landis, M. S., R. W. Long, J. Krug, M. Colon, R. Vanderpool, A. Habel, and S. Urbanski. 2021. The U.S. EPA wildland fire sensor challenge: Performance and evalution of solver submitted multi-pollutant sensor systems. Atmos. Environ. 247:1016. doi:10.1016/j.atmosenv.2020.118165.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115 (10):4335–82. doi:10.1021/cr5006167.
  • Le, T. C., K. K. Shukla, Y. T. Chen, S. C. Chang, T. Y. Lin, Z. Li, D. Y. H. Pui, and C. J. Tsai. 2020. On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmosph. Environ. 222:117138. doi:10.1016/j.atmosenv.2019.117138.
  • Liang, Y., D. Sengupta, M. J. Campmier, D. M. Lunderberg, J. S. Apte, and A. Goldstein. 2021. Wildfire smoke impacts on indoor air quality assessed using crowdsourced data in California. Proc. Natl. Acad. Sci. 118 (36), November 18. doi:10.1073/pnas.2106478118.
  • Li, H., K. D. Lamb, J. P. Schwarz, V. Selimovic, R. J. Yokelson, G. R. McMeeking, and A. A. May. 2019. Inter-comparison of black carbon measurement methods for simulated open biomass burning emissions. Atmos. Environ. 206:156–69. doi:10.1016/j.atmosenv.2019.03.010.
  • Liu, J. C., G. Pereira, S. A. Uhl, M. A. Bravo, and M. L. Bell. 2015. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 136:120–32. doi:10.1016/j.envres.2014.10.015.
  • Long, R. W., A. Whitehill, A. Habel, S. Urbanski, H. Halliday, M. Colón, S. Kaushik, and M. S. Landis. 2021. Comparison of ozone measurement methods in biomass burning smoke: An evaluation under field and laboratory conditions. Atmos. Meas. Tech. 14 (3):1783–800. doi:10.5194/amt-14-1783-2021.
  • Lurmann, F., E. Avol, and F. Gilliland. 2015. Emissions reduction policies and recent trends in Southern California’s ambient air quality. J. Air Waste Manag. Assoc. 65 (3):324–35. doi:10.1080/10962247.2014.991856.
  • Lyamani, H., F. J. Olmo, and L. Alados-Arboledas. 2008. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmos. Environ. 42 (11):2630–42. doi:10.1016/j.atmosenv.2007.10.070.
  • Mallia, D. V., A. K. Kochanski, K. E. Kelly, R. Whitaker, W. Xing, L. E. Mitchell, A. Jacques, A. Farguell, J. Mandel, P. -E. Gaillardon, et al. 2020. Evaluating wildfire smoke transport within a coupled fire-atmosphere model using a high-density observation network for an episodic smoke event along Utah’s Wasatch Front. J. Geophys. Res.: Atmos. 125 (20). doi: 10.1029/2020JD032712.
  • Martinsson, J., H. A. Azeem, M. K. Sporre, R. Bergström, E. Ahlberg, E. Öström, A. Kristensson, E. Swietlicki, and K. E. Stenström. 2017. Carbonaceous aerosol source apportionment using the Aethalometer model – Evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 17 (6):4265–81. doi:10.5194/acp-17-4265-2017.
  • Martinsson, J., A. C. Eriksson, I. E. Nielsen, V. B. Malmborg, E. Ahlberg, C. Andersen, R. Lindgren, R. Nyström, E. Z. Nordin, W. H. Brune, et al. 2015. Impacts of Combustion conditions and photochemical processing on the light absorption of biomass combustion aerosol. Environ. Sci. Technol. 49 (24):14663–71. doi:10.1021/acs.est.5b03205.
  • McClure, C. D., and D. A. Jaffe. 2018. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. U.S.A. 115 (31):7901–06. doi:10.1073/pnas.1804353115.
  • McMeeking, G. R., E. Fortner, T. B. Onasch, J. W. Taylor, M. Flynn, H. Coe, and S. M. Kreidenweis. 2014. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning. J. Geophys. Res.: Atmos. 119 (12): 272– 12,286. doi:10.1002/2014JD021750.
  • Mehadi, A., H. Moosmüller, D. E. Campbell, W. Ham, D. Schweizer, L. Tarnay, and J. Hunter. 2020. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 70 (2):158–79. doi:10.1080/10962247.2019.1654036.
  • Met One Instruments, Inc. 2021. BAM-1022 particulate monitor operation manual. BAM 1020-9805 REV F.
  • Met One Instruments, Inc. 2022. BAM-1020 particulate monitor operation manual. BAM 1022-9805 REV F.
  • Noble, C. A., R. W. Vanderpool, T. M. Peters, F. F. McElroy, D. B. Gemmill, and R. W. Wiener. 2001. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Technol. 34 (5):457–64. doi:10.1080/02786820121582.
  • O’neill, S. M., M. Diao, S. Raffuse, M. Al-Hamdan, M. Barik, Y. Jia, S. Reid, Y. Zou, D. Tong, J. J. West, et al. 2021. A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires. J. Air Waste Manag. Assoc. 71 (7):791–814. doi:10.1080/10962247.2021.1891994.
  • Peñaloza-Murillo, M. 1998. An alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer. J. Aerosol Sci. 29:560–66. doi:10.1016/S0021-8502(98)00560-6.
  • Peters, T. M., G. A. Norris, R. W. Vanderpool, D. B. Gemmill, R. W. Wiener, R. W. Murdoch, F. F. Mcelroy, and M. Pitchford. 2001. Field performance of PM2.5 federal reference method samplers. Aerosol Sci. & Technol 34 (5):433–43. doi:10.1080/02786820116873.
  • Peters, T. M., D. Ott, and P. T. O’Shaughnessy. 2006. “Comparison of the GRIMM 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 Aerodynamic particle sizer for dry particles. Ann. Occup. Hyg. 50 (8):843–50. doi:10.1093/annhyg/mel067.
  • Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio. 2005. A review of biomass burning emissions Part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5 (3):799–825. doi:10.5194/acp-5-799-2005.
  • Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15):7683–93. doi:10.5194/acp-13-7683-2013.
  • Tang, I. N. 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 101 (D14):19245–50. doi:10.1029/96JD03003.
  • Teledyne-API. 2019. The model T640 PM mass monitor specifications sheet. https://www.teledyne-api.com/prod/Downloads/SAL000090E%20-%20T640.pdf.
  • U.S. Department of Agriculture. 2016. Forest health monitoring: National status, trends, and analysis 2015. Asheville, NC: Forest Service Research & Development, Southern Research Station, SRS-213.
  • U.S. Department of Agriculture (USDA). 2014. United States forest resource facts and historical trends, FS-1035. Washington, DC. https://www.fia.fs.fed.us/library/brochures/docs/2012/ForestFacts_1952-2012_English.pdf.
  • U.S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA). 2017 Utah winter fine particulate study final report, March 2018. Accessed September, 2022. https://csl.noaa.gov/groups/csl7/measurements/2017uwfps/finalreport.pdf.
  • U.S. Environmental Protection Agency (EPA). 1997. Reference method for the determination of fine particulate matter as PM2.5 in the atmosphere, 40 CFR Part 50 Appendix L.
  • U.S. Environmental Protection Agency (EPA). 2013. National Ambient air quality standards for particulate matter, final rule. Federal Register Vol. 78, No. 10, January 15.
  • U.S. Environmental Protection Agency (EPA). 2016. Teledyne advanced pollution instrumentation model T640 PM mass monitor. Automatic equivalent method: EQPM-0516-236. Federal Register: Vol. 81, page 45285, August 28.
  • U.S. Environmental Protection Agency (EPA). 2019. Studies advance air monitoring during wildfires and improve forecasting of smoke. https://www.epa.gov/sciencematters/studies-advance-air-monitoring-during-wildfires-and-improve-forecasting-smoke, July 30.
  • U.S. Environmental Protection Agency (EPA). Met One Instruments, Inc. 2015. BAM-1022 real time beta attenuation mass monitor-outdoor PM2.5 FEM configuration. Automated equivalent method: EQPM-1013-209. Federal Register: Vol. 80, page 51802, August 26.
  • Urbanski, S. P. 2013. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US. Atmos. Chem. Phys. 13 (14):7241–62. doi:10.5194/acp-13-7241-2013.
  • Urbanski, S. P., S. M. O Neill, A. L. Holder, S. A. Green, and R. L. Graw. 2022. Emissions. In Wildland fire smoke in the United States: A scientific assessment, D. L. Peterson, S. M. McCaffrey, and T. Patel-Weynand. ed., 121–65. Cham, Switzerland: Springer Nature Switzerland AG. Chapter 5. doi:10.1007/978-3-030-87045-4_5.
  • Urbanski, S. P., M. C. Reeves, R. E. Corley, R. P. Silverstein, and W. M. Hao. 2018. Contiguous United States wildland fire emission estimates during 2003–2015. Earth Syst. Sci. Data 10 (4):2241–74. doi:10.5194/essd-10-2241-2018.
  • Volckens, J., and T. M. Peters. 2005. Counting and particle transmission efficiency of the aerodynamic particle sizer. J Aerosol Sci 36 (12):1400–08. doi:10.1016/j.jaerosci.2005.03.009.
  • Wallace, L., J. Bi, W. R. Ott, J. A. Sarnat, and Y. Liu. 2021. Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5. Atmos. Environ. 256:118432. doi:10.1016/j.atmosenv.2021.118432.
  • Wallace, L. A., T. Zhao, and N. E. Klepeis. 2022a. Indoor contribution to PM2.5 exposure using all PurpleAir sites in Washington, Oregon, and California. Indoor Air 32 (9):13105. doi:10.1111/ina.13105.
  • Wallace, L., T. Zhao, and N. E. Klepeis. 2022b. Calibration of PurpleAir PA-I and PA-II monitors using daily mean PM2.5 concentrations measured in California, Washington, and Oregon from 2017 to 2021. Sensors 22 (13):4741. doi:https://doi.org/10.3390/s22134741.
  • Wang, Y., P. K. Hopke, O. V. Rattigan, X. Xia, D. C. Chalupa, and M. J. Utell. 2011a. Characterization of residential wood combustion particles using the two-wavelength Aethalometer. Environ. Sci. Technol. 45 (17):7387–93. dx. doi:10.1021/es2013984.
  • Wang, Y., P. K. Hopke, O. V. Rattigan, and Y. Zhu. 2011b. Characterization of ambient black carbon and wood burning particles in two urban areas. J. Environ. Monit. 13 (7):1919–26. doi:10.1039/c1em10117j.
  • Wang, Y., J. Huang, T. J. Zananski, P. K. Hopke, and T. M. Holsen. 2010. Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in northern New York. Environ. Sci. Technol. 44 (22):8435–40. doi:10.1021/es1024806.
  • Weinert, D. W., T. G. Cleary, G. W. Mulholland, and P. F. Beever. 2003. Light scattering characteristics and size distribution of smoke and nuisance aerosols. In Fire Safety Science. Proceedings of the 7th International Symposium on Fire Safety Science, 209–20, Gaithersburg, Maryland, USA.
  • Westerling, A. L. 2016. Increasing western U.S. forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc., B 371 (1696):20150178. doi:10.1098/rstb.2015.0178.
  • Westerling, A., T. Brown, T. Schoennagel, T. Swetnam, M. Turner, and T. Veblen. 2014. Briefing: Climate and wildfire in western U.S. forests. In Forest conservation and management in the Anthropocene: Conference proceedings. Proceedings. RMRS-P-71, ed. V. A. Sample and R. P. Bixler, 81–102. Fort Collins, CO: US Department of Agriculture, Forest Service. Rocky Mountain Research Station.
  • Whitehill, A., R. Long, A. Habel, and M. S. Landis. 2022. Evaluation of Cairpol and Aeroqual sensors in wildland fire plumes. Atmosphere 13 (6):877. doi:10.3390/atmos13060877.
  • Xu, Q., A. L. Westerling, A. Notohamiprodjo, C. Wiedinmyer, J. J. Picotte, S. A. Parks, M. D. Hurteau, M. E. Marlier, C. A. Kolden, J. A. Sam, et al. 2022. Wildfire burn severity and emissions inventory: An example implementation over California. Environ. Res. Lett. 17 (8):085008. doi:10.1088/1748-9326/ac80d0.
  • Ye, X. X., P. Arab, R. Ahmadov, E. James, G. A. Grell, B. Pierce, A. Kumar, P. Makar, J. Chen, D. Davignon, et al. 2021. Evaluation and intercomparison of wildfire smoke forecasts from multiple modeling systems for the 2019 Williams Flats fire. Atmos. Chem. Phys. 21 (18):14427–69. doi:10.5194/acp-21-14427-2021.
  • Yue, X., L. J. Mickley, J. A. Logan, and J. O. Kaplan. 2013. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ. 77:767–80. doi:10.1016/j.atmosenv.2013.06.003.
  • Zheng, T., M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E. Carlson. 2018. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 11 (8):4823–46. doi:10.5194/amt-11-4823-2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.