1,075
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Characterization of the short-term temporal variability of road dust chemical mixtures and meteorological profiles in a near-road urban site in British Columbia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 502-516 | Received 15 Dec 2022, Accepted 27 Feb 2023, Published online: 24 May 2023

References

  • Achilleos, S., M.-A. Kioumourtzoglou, C.-D. Wu, J. D. Schwartz, P. Koutrakis, and S. I. Papatheodorou. 2017. Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 109 (December):89–100. doi:10.1016/j.envint.2017.09.010.
  • Adamiec, E., E. Jarosz-Krzemińska, and R. Wieszała. 2016. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 188 (6):369. doi:10.1007/s10661-016-5377-1.
  • Adar, S.D., P.A. Filigrana, N. Clements, and J.L. Peel. 2014. Ambient coarse particulate matter and human health: A systematic review and meta-analysis. Curr. Environ. Health Rep. 1 (3):258–74. doi:10.1007/s40572-014-0022-z.
  • Aguilera, A. 2021. Health risk of heavy metals in street dust. Front. Biosci. 26 (2):327–45. doi:10.2741/4896.
  • Amato, F., F.R. Cassee, H.C. Denier van der Gon, R. Gehrig, M. Gustafsson, W. Hafner, R.M. Harrison, M. Jozwicka, F.J. Kelly, T. Moreno, et al. 2014. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 275 (June):31–36. doi:10.1016/j.jhazmat.2014.04.053.
  • Atkinson, R.W., A. Analitis, E. Samoli, G.W. Fuller, D.C. Green, I.S. Mudway, H.R. Anderson, and F.J. Kelly. 2016. Short-term exposure to traffic-related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 26 (2):125–32. doi:10.1038/jes.2015.65.
  • Barr, B.C., H.Ó. Andradóttir, T. Thorsteinsson, and S. Erlingsson. 2021. Mitigation of suspendable road dust in a subpolar, Oceanic climate. Sustainability 13 (17):9607. Multidisciplinary Digital Publishing Institute. doi:10.3390/su13179607.
  • Basagaña, X., B. Jacquemin, A. Karanasiou, B. Ostro, X. Querol, D. Agis, E. Alessandrini, J. Alguacil, B. Artiñano, M. Catrambone, et al. 2015. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 75 (February):151–58. doi:10.1016/j.envint.2014.11.011.
  • BC MOE. 2016. Air quality in Prince George: Summary report. Accessed August 19, 2022. https://princegeorge.ca/cityhall/mayorcouncil/councilagendasminutes/Agendas/2016/2016-09-19/documents/Attch_AQ_prince-george-aq-report-june2016.pdf.
  • Celo, V., M.M. Yassine, and E. Dabek-Zlotorzynska. 2021. Insights into elemental composition and sources of fine and coarse particulate matter in dense traffic areas in Toronto and Vancouver, Canada. Toxics 9 (10):264. Multidisciplinary Digital Publishing Institute. doi:10.3390/toxics9100264.
  • Choma, E.F., J.S. Evans, J.A. Gómez-Ibáñez, Q. Di, J.D. Schwartz, J.K. Hammitt, and J.D. Spengler. 2021. Health benefits of decreases in on-road transportation emissions in the United States from 2008 to 2017. Proc. Natl. Acad. Sci. 118 (51):e2107402118. doi:10.1073/pnas.2107402118.
  • Coker, E., S. Liverani, J.K. Ghosh, M. Jerrett, B. Beckerman, A. Li, B. Ritz, and J. Molitor. 2016. Multi-pollutant exposure profiles associated with term low birth weight in Los Angeles County. Environ. Int. 91 (May):1–13. doi:10.1016/j.envint.2016.02.011.
  • Coker, E., S. Liverani, J.G. Su, and J. Molitor. 2018. Multi-pollutant modeling through examination of susceptible subpopulations using profile regression. Curr. Environ. Health Rep. 5 (1):59–69. February. doi:10.1007/s40572-018-0177-0.
  • ECCC. 2022. Historical data - climate - environment and climate change Canada. Accessed September 14, 2022. https://climate.weather.gc.ca/historical_data/search_historic_data_e.html.
  • EEA. 2022. Emissions of air pollutants from transport — European environment agency. Indicator assessment. Accessed August 19, 2022. https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8.
  • Faiz, Y., N. Siddique, and M. Tufail. 2012. Pollution level and health risk assessment of road dust from an expressway. J. Environ. Sci. Health Part A 47 (6):818–29. doi:10.1080/10934529.2012.664994.
  • Ferm, M., and K. Sjöberg. 2015. Concentrations and emission factors for PM 2.5 and PM 10 from road traffic in Sweden. Atmos. Environ. 119 (October):211–19. doi:10.1016/j.atmosenv.2015.08.037.
  • Fussell, J.C., M. Franklin, D.C. Green, M. Gustafsson, R.M. Harrison, W. Hicks, F.J. Kelly, F. Kishta, M.R. Miller, I.S. Mudway, et al. 2022. A review of road traffic-derived non-exhaust particles: Emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56 (11):6813–35. American Chemical Society. doi:10.1021/acs.est.2c01072.
  • Graham, M., A. Planiden, P. Schaap, J. Scott, M. Furberg, and S. Stiebert. 2005. Best management practices to mitigate road dust from winter traction materials. Victoria: British Columbia Ministry of Water, Land and Air Protection. http://www.llbc.leg.bc.ca/public/PubDocs/bcdocs/378929/roaddustbmp_june05.pdf.
  • Health Canada. 2016. Human health risk assessment for coarse particulate matter: Executive summary. Assessments. Accessed September 13, 2022. https://www.canada.ca/en/health-canada/services/publications/healthy-living/human-health-risk-assessment-coarse-particulate-matter-executive-summary.html.
  • Hong, K.Y., G.H. King, A. Saraswat, and S.B. Henderson. 2017. Seasonal ambient particulate matter and population health outcomes among communities impacted by road dust in British Columbia, Canada. J. Air Waste Manag. Assoc. 67 (9):986–99. doi:10.1080/10962247.2017.1315348.
  • Hoover, J.H., E. Coker, Y. Barney, C. Shuey, and J. Lewis. 2018. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation – Arizona, New Mexico, and Utah, USA. Sci. Total Environ. 633 (August):1667–78. doi:10.1016/j.scitotenv.2018.02.288.
  • Huang, S., P. Taddei, J. Lawrence, M.A.G. Martins, J. Li, and P. Koutrakis. 2021. Trace element mass fractions in road dust as a function of distance from road. J. Air Waste Manag. Assoc. 71 (2):137–46. Taylor & Francis. doi:10.1080/10962247.2020.1834011.
  • Jaishankar, M., T. Tseten, N. Anbalagan, B.B. Mathew, and K.N. Beeregowda. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7 (2):60–72. doi:10.2478/intox-2014-0009.
  • Jones, A.M., J. Yin, and R.M. Harrison. 2008. The weekday–weekend difference and the estimation of the non-vehicle contributions to the urban increment of airborne particulate matter. Atmos. Environ. 42 (19):4467–79. doi:10.1016/j.atmosenv.2008.02.001.
  • Khan, R.K., and M.A. Strand. 2018. Road dust and its effect on human health: A literature review. Epidemiol. Health. 40 (April):e2018013. doi:10.4178/epih.e2018013.
  • Kuhns, H., V. Etyemezian, and P. Shinbein. 2008. Relating road dust emissions surrogates to average daily traffic and vehicle speed in Las Vegas. Nevada: US EPA.
  • Lavigne, A., A. Freni-Sterrantino, D. Fecht, S. Liverani, M. Blangiardo, K. de Hoogh, J. Molitor, and A.L. Hansell. 2020. A spatial joint analysis of metal constituents of ambient particulate matter and mortality in England. Environ. Epidemiol. 4 (4):e098. doi:10.1097/EE9.0000000000000098.
  • Liverani, S., D. Hastie, L. Azizi, M. Papathomas, and S. Richardson. 2015. PReMiuM: An R package for profile regression mixture models using Dirichlet processes. J. Stat. Softw. 64 (7). doi:10.18637/jss.v064.i07.
  • McDuffie, E.E., R.V. Martin, J.V. Spadaro, R. Burnett, S.J. Smith, P. O’rourke, M.S. Hammer, A. van Donkelaar, L. Bindle, V. Shah, et al. 2021. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12 (1):3594. Nature Publishing Group. doi:10.1038/s41467-021-23853-y.
  • Meister, K., C. Johansson, and B. Forsberg. 2012. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 120 (3):431–36. doi:10.1289/ehp.1103995.
  • Molitor, J., E. Coker, M. Jerrett, B. Ritz, A. Li, and Health Review Committee. 2016. Part 3. Modeling of multipollutant profiles and spatially varying health effects with applications to indicators of adverse birth outcomes. Res. Rep. Health Eff. Inst. 183 (Pt 3):3–47. April.
  • Molitor, J., M. Papathomas, M. Jerrett, and S. Richardson. 2010. Bayesian profile regression with an application to the national survey of children’s health. Biostatistics 11 (3):484–98. doi:10.1093/biostatistics/kxq013.
  • Morawska, L., E.R. Jayaratne, K. Mengersen, M. Jamriska, and S. Thomas. 2002. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 36 (27):4375–83. doi:10.1016/S1352-2310(02)00337-0.
  • Moreno, T., X. Querol, A. Alastuey, and W. Gibbons. 2009. Identification of chemical tracers in the characterisation and source apportionment of inhalable inorganic airborne particles: An overview. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 14 (Suppl 1):17–22. July. doi:10.1080/13547500902965435.
  • Morishita, M., R.L. Bard, L. Wang, R. Das, J.T. Dvonch, C. Spino, B. Mukherjee, Q. Sun, J.R. Harkema, S. Rajagopalan, et al. 2015. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures. J. Expo. Sci. Environ. Epidemiol. 25 (2):153–59. doi:10.1038/jes.2014.62.
  • Mukherjee, A., M.C. McCarthy, S.G. Brown, S. Huang, K. Landsberg, and D.S. Eisinger. 2020. Influence of roadway emissions on near-road PM2.5: Monitoring data analysis and implications. Transp. Res. Part Transp. Environ. 86 (September):102442. doi:10.1016/j.trd.2020.102442.
  • Najmeddin, A., F. Moore, B. Keshavarzi, and Z. Sadegh. 2018. Pollution, source apportionment and health risk of Potentially Toxic Elements (PTEs) and Polycyclic Aromatic Hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. J. Geochem. Explor. 190 (July):154–69. doi:10.1016/j.gexplo.2018.03.004.
  • OECD. 2020. Measures needed to curb particulate matter emitted by wear of car parts and road surfaces - OECD. Accessed September 14, 2022. https://www.oecd.org/environment/measures-needed-to-curb-particulate-matter-emitted-by-wear-of-car-parts-and-road-surfaces.htm.
  • Papathomas, M., J. Molitor, S. Richardson, E. Riboli, and P. Vineis. 2010. Examining the joint effect of multiple risk factors using exposure risk profiles: Lung cancer in nonsmokers. Environ. Health Perspect. 119 (1):84–91. doi:10.1289/ehp.1002118.
  • Perez, L., M. Medina-Ramón, N. Künzli, A. Alastuey, J. Pey, N. Pérez, R. Garcia, A. Tobias, X. Querol, and J. Sunyer. 2009. Size fractionate particulate matter, vehicle traffic, and case-specific daily mortality in Barcelona, Spain. Environ. Sci. Technol. 43 (13):4707–14. doi:10.1021/es8031488.
  • R Core Team. 2022. R: The R project for statistical computing. Accessed October 5, 2022. https://www.r-project.org/.
  • Richardson, D.B., and A. Ciampi. 2003. Effects of exposure measurement error when an exposure variable is constrained by a lower limit. Am. J. Epidemiol. 157 (4):355–63. doi:10.1093/aje/kwf217.
  • Rohr, A., and J. McDonald. 2016. Health effects of carbon-containing particulate matter: Focus on sources and recent research program results. Crit. Rev. Toxicol. 46 (2):97–137. doi:10.3109/10408444.2015.1107024.
  • Roy, S., S.K. Gupta, J. Prakash, G. Habib, K. Baudh, and M. Nasr. 2019. Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ. Sci. Pollut. Res. 26 (29):30413–25. doi:10.1007/s11356-019-06216-5.
  • Samara, C., and D. Voutsa. 2005. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59 (8):1197–206. doi:10.1016/j.chemosphere.2004.11.061.
  • Sang, S., C. Chu, T. Zhang, H. Chen, and X. Yang. 2022. The global burden of disease attributable to ambient fine particulate matter in 204 countries and territories, 1990–2019: A systematic analysis of the global burden of disease study 2019. Ecotoxicol. Environ. Saf. 238 (June):113588. doi:10.1016/j.ecoenv.2022.113588.
  • Shah, M.H., N. Shaheen, M. Jaffar, A. Khalique, S.R. Tariq, and S. Manzoor. 2006. Spatial variations in selected metal contents and particle size distribution in an urban and rural atmosphere of Islamabad, Pakistan. J. Environ. Manage. 78 (2):128–37. doi:10.1016/j.jenvman.2005.04.011.
  • Silva, E., S. Huang, J. Lawrence, M.A.G. Martins, J. Li, and P. Koutrakis. 2021. Trace element concentrations in ambient air as a function of distance from road. J. Air Waste Manag. Assoc. 71 (2):129–36. doi:10.1080/10962247.2020.1866711.
  • Soleimanian, E., S. Taghvaee, A. Mousavi, M.H. Sowlat, M.S. Hassanvand, M. Yunesian, K. Naddafi, and C. Sioutas. 2019. Sources and temporal variations of coarse particulate matter (PM) in Central Tehran, Iran. Atmosphere 10 (5):291. Multidisciplinary Digital Publishing Institute. doi:10.3390/atmos10050291.
  • Stafoggia, M., E. Samoli, E. Alessandrini, E. Cadum, B. Ostro, G. Berti, A. Faustini, B. Jacquemin, C. Linares, M. Pascal, et al. 2013. Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: Results from the MED-PARTICLES project. Environ. Health Perspect. 121 (9):1026–33. doi:10.1289/ehp.1206151.
  • Stojiljkovic, A., M. Kauhaniemi, J. Kukkonen, K. Kupiainen, A. Karppinen, B.R. Denby, A. Kousa, J.V. Niemi, and M. Ketzel. 2019. The impact of measures to reduce ambient air PM10 concentrations originating from road dust, evaluated for a street Canyon in Helsinki. Atmospheric Chem. Phys. 19 (17):11199–212. Copernicus GmbH. doi:10.5194/acp-19-11199-2019.
  • Tchounwou, P.B., C.G. Yedjou, A.K. Patlolla, and D.J. Sutton. 2012. Heavy metal toxicity and the environment. In Molecular, clinical and environmental toxicology, ed. A. Luch, Vol. 101, 133–64. Experientia Supplementum. Basel: Springer Basel. doi:10.1007/978-3-7643-8340-4_6.
  • Tong, S. 2019. Air pollution and disease burden. Lancet Planet. Health 3 (2):e49–50. Elsevier. doi:10.1016/S2542-5196(18)30288-2.
  • Winkler, S.L., J.E. Anderson, L. Garza, W.C. Ruona, R. Vogt, and T.J. Wallington. 2018. Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: How low should we go? Npj Clim. Atmospheric Sci. 1 (1):26. doi:10.1038/s41612-018-0037-5.
  • Wu, Y., P. Song, S. Lin, L. Peng, Y. Li, Y. Deng, X. Deng, W. Lou, S. Yang, Y. Zheng, et al. 2021. Global burden of respiratory diseases attributable to ambient particulate matter pollution: Findings from the global burden of disease study 2019. Front. Public Health 9. doi:10.3389/fpubh.2021.740800.
  • Xie, J.-J., C.-G. Yuan, J. Xie, Y.-W. Shen, D.-W. Zha, K.-G. Zhang, and H.-T. Zhu. 2019. Fraction distribution of arsenic in different-sized atmospheric particulate matters. Environ. Sci. Pollut. Res. Int. 26 (30):30826–35. doi:10.1007/s11356-019-06176-w.
  • Zereini, F., F. Alt, J. Messerschmidt, C. Wiseman, I. Feldmann, A. von Bohlen, J. Müller, K. Liebl, and W. Püttmann. 2005. Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environ. Sci. Technol. 39 (9):2983–89. doi:10.1021/es040040t.
  • Zhang, X., B. Zhou, Z. Li, Y. Lin, L. Li, and Y. Han. 2022. Seasonal distribution of atmospheric coarse and fine particulate matter in a medium-sized city of Northern China. Toxics 10 (5):216. doi:10.3390/toxics10050216.