225
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Potential of plant mediated biosynthesis of iron nanoparticles and their application in dye degradation process

, , , , &

References

  • Badmapriya, D., and I.V. Asharani. 2016. Dye degradation studies catalysed by green synthesized Iron oxide nanoparticles. Int. J. ChemTech Res. 9 (6):409–16.
  • Bell, J.F., T.L. Roush, and R.V. Morris. 1995. Mid‐infrared transmission spectra of crystalline and nanophase iron oxides/oxy hydroxides and implications for remote sensing of Mars. J. Geophys. Res.: Planets 100 (E3):5297–307. doi:10.1029/94JE01389.
  • Choudhry, P., A. Misra, and S.N. Tripathi. 2012. Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. AnnalesGeophysicae 30 (10):1479–93. doi:10.5194/angeo-30-1479-2012.
  • Devatha, C.P., A.K. Thalla, and S.Y. Katte. 2016. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 139:1425–35. doi:10.1016/j.jclepro.2016.09.019.
  • Ebrahiminezhad, A., S. Taghizadeh, Y. Ghasemi, and A. Berenjian. 2018. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 621:1527–32. doi:10.1016/j.scitotenv.2017.10.076.
  • Gan, L., B. Li, M. Guo, X. Weng, T. Wang, and Z. Chen. 2018. Mechanism for removing 2, 4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles. Chemosphere 206:168–74.
  • Huang, L., X. Weng, Z. Chen, M. Megharaj, and R. Naidu. 2013. Synthesis of iron-based nanoparticles using Oolong tea extract for the degradation of malachite green. Spectrochim. Acta A. 117:801–804. doi:10.1016/j.saa.2013.09.054.
  • Kuang, Y., Q. Wang, Z. Chen, M. Megharaj, and R. Naidu. 2013. Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci. 410:67–73. doi:10.1016/j.jcis.2013.08.020.
  • Machado, S., S.L. Pinto, J.P. Grosso, H.P.A. Nouws, J.T. Albergaria, and C. Delerue-Matos. 2013. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ. 445–446:1–8. doi:10.1016/j.scitotenv.2012.12.033.
  • Nadagouda, M.N., A.B. Casle, R.C. Murdock, S.M. Hussain, and R.S. Varma. 2010. In vitro biocompatibility of nanoscale zero valentiron particles (NZVI) synthesized using tea polyphenols. Green Chem 12 (1):114–22. doi:10.1039/B921203P.
  • Nurmi, J.T., P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, et al. 2005. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39 (5):1221–30. doi:10.1021/es049190u.
  • Ouyang, Q., F. Kou, P.E. Tsang, J. Lian, J. Xian, J. Fang, and Z. Fang. 2019. Green synthesis of Fe-based material using tea polyphenols and its application as a heterogeneous Fenton-like catalyst for the degradation of lincomycin. J. Clean. Prod. 232:1492–98. doi:10.1016/j.jclepro.2019.06.043.
  • Pan, Z., Y. Lin, B. Sarkar, G. Owens, and Z. Chen. 2020. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal. J. Colloid Interface Sci. 558:106–14.
  • Perde-Schrepler, M., L. David, M. Potara, E. Fischer-Fodor, P. Virag, F. Imre-Lucaci, I. Brie, A. Florea, and L. Olenic. 2016. Gold Nanoparticles Synthesized with a Polyphenols- Rich Extract from Cornelian Cherry (Cornus mas) Fruits: Effects on Human Skin Cells. J. Nanomater. 1:Article ID 6986370.
  • Poguberović, S.S., D.M. Krčmar, S.P. Maletić, Z. Kónya, D.D.T. Pilipović, D.V. Kerkez, and S.D. Rončević. 2016. Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49. doi:10.1016/j.ecoleng.2016.01.083.
  • Rajeshkumar, S. 2016. Synthesis of silver nanoparticles using fresh bark of Pongamia piñata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour. Effic. Technol 2 (1):30–35. doi:10.1016/j.reffit.2016.06.003.
  • Saif, S., A. Tahir, and Y. Chen. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209.
  • Sajid, Z.I., F. Anwar, G. Shabir, G. Rasul, K.M. Alkharfy, and A.-H. Gilani. 2012. Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre. (L.) Pierre. Molecules 17 (4):3917–32. doi:10.3390/molecules17043917.
  • Schauermann, S., N. Nillius, S. Shaikhutodnov, and H.J. Freund. 2012. Nanoparticles for heterogenous catalysis: New mechanistic insights. Acc. Chem. Res. 4 (68):1673–81. doi:10.1021/ar300225s.
  • Shahwan, T., S. Abu Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, and K.R. Hallam. 2011. Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172 (1):258–66. doi:10.1016/j.cej.2011.05.103.
  • Smuleac, V., R. Varma, S. Sikdar, and D. Bhattacharyya. 2011. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Memb Sci 379 (1):131–37. doi:10.1016/j.memsci.2011.05.054.
  • Steponeniene, L., S. Tautkus, and R. Kazlauskas. 2003. Determination of zinc in plants and grains by atomic absorption spectrometry. Chemija 14 (2):99–102.
  • Subbenaik, S.C. 2016. Physical and Chemical Nature of Nanoparticles. In Plant Nanotechnology, ed. C. Kole, D. Kumar, and M. Khodakovskaya, 15–27. Cham: Springer.
  • Vasantharaj, S., S. Sathiyavimal, P. Senthilkumar, F. Lewis Oscar, and A. Pugazhendhi. 2019. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. Photochem. Photobiol. B Biol 192:74–82. doi:10.1016/j.jphotobiol.2018.12.025.
  • Wang, Z., C. Fang, and M. Megharaj. 2014. Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain. Chem. Eng. 2:1022–25.
  • Wu, J., M. Lin, X. Weng, G. Owens, and Z. Chen. 2021. Pre-adsorption and Fenton-like oxidation of mitoxantrone using hybrid green synthesized rGO/Fe nanoparticles. Chem. Eng. J. 408:127273. doi:10.1016/j.cej.2020.127273.
  • Xiao, C., H. Li, Y. Zhao, X. Zhang, and X. Wang. 2020. Green synthesis of iron nanoparticle by tea extract (polyphenols) and its selective removal of cationic dyes. J. Environ. Manage. 275:111262. doi:10.1016/j.jenvman.2020.111262.
  • Yan, L., W. Chen, X. Zhu, L. Huang, Z. Wang, G. Zhu, and X. Chen. 2013. Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chemical Communications 49 (93):10938–40.
  • Zhu, F., S. Ma, T. Liu, and X. Deng. 2018. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 174:184–90. doi:10.1016/j.jclepro.2017.10.302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.