1,729
Views
1
CrossRef citations to date
0
Altmetric
2023 Annual A&WMA Critical Review

Environmental sampling for disease surveillance: Recent advances and recommendations for best practice

, , &
Pages 434-461 | Received 18 Oct 2022, Accepted 10 Mar 2023, Published online: 24 May 2023

References

  • Addor, Y.S., D. Baumgardner, D. Hughes, N. Newman, R. Jandarov, and T. Reponen. 2022. Assessing residential indoor and outdoor bioaerosol characteristics using the ultraviolet light-induced fluorescence-based wideband integrated bioaerosol sensor. Environ. Sci. 24 (10):1790–804. doi:10.1039/D2EM00177B.
  • Ai, Y., C. Wang, Y.L. Pan, and G. Videen. 2022. Characterization of single fungal aerosol particles in a reactive atmospheric environment using time-resolved Optical Trapping-Raman Spectroscopy (OT-RS). Environ. Sci. 2 (4):591–600. doi:10.1039/D2EA00030J.
  • Alsved, M., C.J. Fraenkel, M. Bohgard, A. Widell, A. Söderlund-Strand, P. Lanbeck, T. Holmdahl, C. Isaxon, A. Gudmundsson, P. Medstrand, et al. 2020. Sources of airborne norovirus in hospital outbreaks. Clin. Infect. Dis. 70 (10):2023–28. doi:10.1093/cid/ciz584.
  • Anderson, B.D., J. A. Lednicky, M. Torremorell, and G. C. Gray. 2017. The use of bioaerosol sampling for airborne virus surveillance in swine production facilities: A mini review. Front. Vet. Sci. 4 (July). doi: 10.3389/fvets.2017.00121.
  • Andreotti, P. E., G. V. Ludwig, A. Harwood Peruski, J.J. Tuite, S. S. Morse, and L. F. Peruski. 2003. Immunoassay of infectious agents. Bio.Techniques 35 (4):850–59. doi:10.2144/03354ss02.
  • Auger, J.C., K.B. Aptowicz, R.G. Pinnick, Y.L. Pan, and R.K. Chang. 2007. Angularly resolved light scattering from aerosolized spores: Observations and calculations. Opt. Lett. 32 (22):3358. doi:10.1364/OL.32.003358.
  • Augusto, M.R., I. Carolina Mantovani Claro, A. Kaori Siqueira, G. Santos Sousa, C. Roberto Caldereiro, A. Feliciano Alves Duran, T.B. de Miranda, L. de Moraes Bomediano Camillo, A. Diniz Cabral, and R. de Freitas Bueno. 2022. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. J. Environ. Chem. Eng. 10:3. doi:10.1016/J.JECE.2022.107478.
  • Barksdale, A.N., W.G. Zeger, J.L. Santarpia, V.L. Herrera, D. N. Ackerman, J.J. Lowe, and M.C. Wadman. 2021. Implementation of a COVID-19 cohort area resulted in no surface or air contamination in surrounding areas in one academic emergency department. Am. J. Emerg. Med. 47 (September):253–57. doi:10.1016/j.ajem.2021.04.082.
  • Bauer, A.J.R., and D.M. Sonnenfroh. 2009. Spark-induced breakdown spectroscopy-based classification of bioaerosols. In 2009 IEEE international workshop on Safety, Security & Rescue Robotics (SSRR 2009), 1–4. IEEE. doi:10.1109/SSRR.2009.5424145.
  • Beedham, R.J., and C.H. Davies. 2021. The UK biological-warfare program: Dual-use contributions to the field of aerobiology. Nonproliferation Review. doi:10.1080/10736700.2020.1823621.
  • Bert, F., G. Scaioli, M. Rosaria Gualano, S. Passi, M. Lucia Specchia, C. Cadeddu, C. Viglianchino, and R. Siliquini. 2014. Norovirus outbreaks on commercial cruise ships: A systematic review and new targets for the public health agenda. Food Environ. Virol. 6 (2):67–74. doi:10.1007/s12560-014-9145-5.
  • Bhangar, S., R.I. Adams, W. Pasut, J.A. Huffman, E.A. Arens, J.W. Taylor, T.D. Bruns, and W.W. Nazaroff. 2016. Chamber bioaerosol study: Human emissions of size‐resolved fluorescent biological aerosol particles. Indoor Air 26 (2):193–206. doi:10.1111/ina.12195.
  • Bhangar, S., J.A. Huffman, and W.W. Nazaroff. 2014. Size‐resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air 24 (6):604–17. doi:10.1111/ina.12111.
  • Bivins, A., D. Kaya, W. Ahmed, J. Brown, C. Butler, J. Greaves, R. Leal, K. Maas, G. Rao, S. Sherchan, et al. 2022. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Sci. Total Environ. 835 (August):155347. doi:https://doi.org/10.1016/J.SCITOTENV.2022.155347.
  • Blachere, F.M., G. Cao, W.G. Lindsley, J.D. Noti, and D.H. Beezhold. 2011. Enhanced detection of infectious airborne influenza virus. J. Virol. Method 176 (1–2):120–24. doi:10.1016/j.jviromet.2011.05.030.
  • Blachere, F.M., W.G. Lindsley, T.A. Pearce, S.E. Anderson, M. Fisher, R. Khakoo, B.J. Meade, O. Lander, S. Davis, R. Thewlis, et al. 2009. Measurement of airborne influenza virus in a hospital emergency department. Clin. Infect. Dis. 48 (4):438–40. doi:https://doi.org/10.1086/596478.
  • Blachere, F.M., W.G. Lindsley, A.M. Weber, D.H. Beezhold, R.E. Thewlis, K.R. Mead, and J.D. Noti. 2018. Detection of an avian lineage influenza A(H7N2) virus in air and surface samples at a New York City feline quarantine facility. Influenza Other Respi. Viruses 12 (5):613–22. doi:10.1111/irv.12572.
  • Bonifait, L., R. Charlebois, A. Vimont, N. Turgeon, M. Veillette, Y. Longtin, J. Jean, and C. Duchaine. 2015. Detection and quantification of airborne norovirus during outbreaks in healthcare facilities. Clin. Infect. Dis. 61 (3):299–304. doi:10.1093/cid/civ321.
  • Bonk, T., and A. Humeny. 2001. MALDI-TOF-MS analysis of protein and DNA. The Neurosci. 7 (1):6–12. doi:10.1177/107385840100700104.
  • Boxman, I.L.A., L. Verhoef, R. Dijkman, G. Hägele, N.A.J.M. Te Loeke, and M. Koopmans. 2011. Year-round prevalence of norovirus in the environment of catering companies without a recently reported outbreak of gastroenteritis. Appl. Environ. Microbiol. 77 (9):2968–74. doi:10.1128/AEM.02354-10.
  • Boyain-Goitia, A., R. David, C.S. Beddows, C.G. Ben, and H. T. Helmut. 2003. Single-pollen analysis by laser-induced breakdown spectroscopy and raman microscopy. Appl. Opt. 42 (30):6119. doi:10.1364/AO.42.006119.
  • Brockwell-Staats, C., R.G. Webster, and R.J. Webby. 2009. Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza a (H1N1). Influenza Other Respi Viruses 3 (5):207–13. doi:10.1111/j.1750-2659.2009.00096.x.
  • Burton, N.C., S.A. Grinshpun, and T. Reponen. 2006. Physical collection efficiency of filter materials for bacteria and viruses. Ann. Occup. Hyg. October. doi:10.1093/annhyg/mel073.
  • Cabalo, J., R. Sickenberger, M. de Lucia, J. Briles, A. Poldmae, and S. David. 2005. Overview of the TAC-BIO sensor, ed. Edward M. Carapezza, 293. doi:10.1117/12.606902
  • Cantú, V.J., P. Belda-Ferre, R.A. Salido, R. Tsai, B. Austin, W. Jordan, M. Asudani, A. Walster, C.G. Magallanes, H. Valentine, et al. 2022. Implementation of practical surface SARS-CoV-2 surveillance in school settings. MSystems 7 (4). doi: 10.1128/mSystems.00109-22.
  • Cao, G., J.D. Noti, F.M. Blachere, W.G. Lindsley, and D.H. Beezhold. 2011. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler. J. Environ Monitor 13 (12):3321–28. doi:10.1039/c1em10607d.
  • Carducci, A., M. Verani, B. Casini, A. Giuntini, F. Mazzoni, E. Rovini, A. Passaglia, L. Giusti, A. Valenza, and R. Lombardi. 2001. Detection and potential indicators of the presence of hepatitis C virus on surfaces in hospital settings. Lett. Appl. Microbiol. 34 (3):189–93. doi:10.1046/j.1472-765x.2002.01066.x.
  • Chia, P.Y., K. Kelli Coleman, Y. Kim Tan, S. Wei Xiang Ong, M. Gum, S. Kiang Lau, X. Fang Lim, A. S. Lim, S. Sutjipto, P. H. Lee, et al. 2020. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11 (1):2800. doi:10.1038/s41467-020-16670-2.
  • Chitnis, A., D. Rawls, and J. Moore. 2000. Origin of HIV type 1 in colonial French equatorial Africa? AIDS Res. Hum. Retroviruses 16 (1):5–8. doi:10.1089/088922200309548.
  • Cho, Y.S., H. Ri Kim, K. Hyun Sik, S. Bin Jeong, B. Chan Kim, and J. Hee Jung. 2020. Continuous surveillance of bioaerosols on-site using an automated bioaerosol-monitoring system. ACS Sens. 5 (2):395–403. doi:10.1021/acssensors.9b02001.
  • Chow, J.C., J.G. Watson, X. Wang, B. Abbasi, W. Randolph Reed, and D. Parks. 2022. Review of filters for air sampling and chemical analysis in mining workplaces. Minerals 12 (10):1314. doi:10.3390/min12101314.
  • Christesen, S.D., C.N. Merrow, M.S. DeSha, A. Wong, M.W. Wilson, and J.C. Butler. 1994. Ultraviolet fluorescence lidar detection of bioaerosols, ed. W. A. Flood and W. B. Miller, 228. doi:10.1117/12.177988
  • Clendening, L. 1942. Source book of medical history. 1st ed. New York, NY: Harper & Brothers.
  • Coleman, K.K., and W.V. Sigler. 2020. Airborne influenza a virus exposure in an elementary school. Sci. Rep. 10 (1):1859. doi:10.1038/s41598-020-58588-1.
  • Conant, J.B. 1957. CASE 7. Pasteur’s and Tyndall’s study of spontaneous generation. In Harvard case histories in experimental science, Vol. II, 486–539. Harvard University Press. doi:10.4159/harvard.9780674598713.c4.
  • Crane, S.R., J.A. Moore, M.E. Grismer, and J.R. Miner. 1983. Bacterial pollution from agricultural sources: A review. Transactions of the ASAE 26 (3):858–66. doi:10.13031/2013.34036.
  • Crowe, J., A.T. Schnaubelt, S. SchmidtBonne, K. Angell, J. Bai, T. Eske, M. Nicklin, C. Pratt, B. White, B. Crotts-Hannibal, et al. 2021. Assessment of a program for SARS-CoV-2 screening and environmental monitoring in an urban public school district. JAMA Network Open. 4 (9):e2126447. doi:https://doi.org/10.1001/jamanetworkopen.2021.26447.
  • Cunha, C.B., and S.M. Opal. 2014. Middle East Respiratory Syndrome (MERS). Virulence 5 (6):650–54. doi:10.4161/viru.32077.
  • Damit, B., and M. Antoine. 2021. Portable biological spectroscopy: Field applications. In Portable spectroscopy and spectrometry, 545–63. Wiley. doi:10.1002/9781119636489.ch22.
  • DeFreez, R., E. Merrill, S. Albanna, B. Davis, and C. Charles. 2005. Design considerations and performance characteristics of airsentinel: A New UV-LIF Bio-aerosol threat detection trigger, ed. John C. Carrano, Arturas Zukauskas, Anthony W. Vere, James G. Grote, and François Kajzar, 59900O. doi:10.1117/12.634389
  • Doughty, D.C., and S.C. Hill. 2017. Automated aerosol raman spectrometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transf. 188 (February):103–17. doi:10.1016/J.JQSRT.2016.06.042.
  • Downey, A.S., S.M. Da Silva, N.D. Olson, J.J. Filliben, and J.B. Morrow. 2012. Impact of processing method on recovery of bacteria from wipes used in biological surface sampling. Appl. Environ. Microbiol. 78 (16):5872–81. doi:10.1128/AEM.00873-12.
  • Duan, H., L. Xuan, A. Mei, L. Ping, Y. Liu, L. Xiaofeng, L. Weiwei, C. Wang, and S. Xie. 2021. The diagnostic value of metagenomic next⁃generation sequencing in infectious diseases. BMC Infect. Dis. 21 (1):62. doi:10.1186/s12879-020-05746-5.
  • Dybwad, M., G. Skogan, and J. Martha Blatny. 2014. Comparative testing and evaluation of nine different air samplers: End-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 48 (3):282–95. doi:10.1080/02786826.2013.871501.
  • Eversole, J.D., J.J. Hardgrove, W.K. Cary, D.P. Choulas, and M. Seaver. 1999. Continuous, rapid biological aerosol detection with the use of UV fluorescence: Outdoor test results. Field. Anal Chem Technol 3 (4–5):249–59. https://doi.org/10.1002/(SICI)1520-6521(1999)3:4/5<249::AID-FACT4>3.0.CO;2-O
  • Fergenson, D.P., M.E. Pitesky, H.J. Tobias, P.T. Steele, G.A. Czerwieniec, S.C. Russell, C.B. Lebrilla, J.M. Horn, K.R. Coffee, A. Srivastava, et al. 2004. Reagentless detection and classification of individual bioaerosol particles in seconds. Anal. Chem. 76 (2):373–78. doi:10.1021/ac034467e.
  • Fewtrell, L., and J. Bartram. 2013. Water quality : Guidelines, standards, and Health : Assessment of risk and risk management for water-related infectious disease. doi:10.2166/9781780405889.
  • Fong, M.W., N.H.L. Leung, J. Xiao, D.K.W. Chu, S.M.S. Cheng, S. Hau Chi, L. Yuguo, D.K.M. Ip, J.S. Malik Peiris, and B.J. Cowling. 2020. Presence of influenza virus on touch surfaces in kindergartens and primary schools. J. Infect. Dis. 222 (8):1329–33. doi:10.1093/infdis/jiaa114.
  • Fredricks, D.N., and D.A. Relman. 1999. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29 (3):475–86. http://www.jstor.org/stable/4460932.
  • Fu, R., C. Wang, O. Muñoz, G. Videen, J.L. Santarpia, and Y.L. Pan. 2017. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles. J. Quant. Spectrosc. Radiat. Transf. 187 (January):224–31. doi:10.1016/j.jqsrt.2016.09.018.
  • Galindo, I., and C. Alonso. 2017. African swine fever virus: A review. Viruses 9 (5):103. doi:10.3390/v9050103.
  • Gard, E., J.E. Mayer, B.D. Morrical, T. Dienes, D.P. Fergenson, and K.A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem. 69 (20):4083–91. doi:10.1021/ac970540n.
  • Garza, A.G., S.M. Van Cuyk, M.J. Brown, and K.M. Omberg. 2005. Detection of the urban release of a bacillus anthracis simulant by air sampling. Biosecur. Bioterror. 12:2. doi:10.1089/bsp.2013.0086.
  • Gebhardt, J.T., S.S. Dritz, C. Grace Elijah, C.K. Jones, C.B. Paulk, and J.C. Woodworth. 2021. Sampling and detection of African swine fever virus within a feed manufacturing and swine production system. Transbound Emerg Dis 69 (1):103–14. doi:10.1111/tbed.14335.
  • Ghosh, S., M. Kumar, M. Santiana, A. Mishra, M. Zhang, H. Labayo, A.M. Chibly. 2022. Enteric viruses replicate in salivary glands and infect through saliva. Nature 607 (7918):345–50. doi:10.1038/s41586-022-04895-8.
  • Gieray, R.A., P.T.A. Reilly, M. Yang, W.B. Whitten, and J.M. Ramsey. 1997. Real-time detection of individual airborne bacteria. J. Microbiol. Methods 29 (3):191–99. doi:10.1016/S0167-7012(97)00049-3.
  • Gonçalves, J., P.G. da Silva, L. Reis, M. São José Nascimento, T. Koritnik, M. Paragi, and J.R. Mesquita. 2021. Surface contamination with SARS-CoV-2: A systematic review. Sci. Total Environ. 798 (December):149231. doi:10.1016/j.scitotenv.2021.149231.
  • Gordon, J., P. Gandhi, G. Shekhawat, A. Frazier, J. Hampton-Marcell, and J.A. Gilbert. 2015. A simple novel device for air sampling by electrokinetic capture. Microbiome 3 (1):79. doi:10.1186/s40168-015-0141-2.
  • Grayson, S.A., P.S. Griffiths, M.K. Perez, and G. Piedimonte. 2017. Detection of airborne respiratory syncytial virus in a pediatric acute care clinic. Pediatr. Pulmonol. 52 (5):684–88. doi:10.1002/ppul.23630.
  • Guo, Z.D., Z. Yi Wang, S. Feng Zhang, L. Xiao, L. Lin, L. Chao, Y. Cui, R.-B. Fu, Y.-Z. Dong, X.-Y. Chi, et al. 2020. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infect. Dis. 26 (7):1583–91. doi:10.3201/EID2607.200885.
  • Hairston, P.P., H. Jim, and F.R. Quant. 1997. Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence. J. Aerosol. Sci. 28 (3):471–82. doi:10.1016/S0021-8502(96)00448-X.
  • Han, T.T., N.T. Myers, S. Manibusan, and G. Mainelis. 2022. Development and optimization of Stationary Electrostatic Bioaerosol Sampler (SEBS) for viable and culturable airborne microorganisms. J. Aerosol. Sci. 162 (May):105951. doi:10.1016/j.jaerosci.2022.105951.
  • Han, T.T., N.M. Thomas, and G. Mainelis. 2017. Design and development of a self-contained Personal Electrostatic Bioaerosol Sampler (PEBS) with a wire-to-wire charger. Aerosol Sci. Technol. 51 (8):903–15. doi:10.1080/02786826.2017.1329516.
  • Han, T.T., N.M. Thomas, and G. Mainelis. 2018. Performance of Personal Electrostatic Bioaerosol Sampler (PEBS) when collecting airborne microorganisms. J. Aerosol. Sci. 124 (October):54–67. doi:10.1016/j.jaerosci.2018.07.004.
  • Harris, J.C., M.S. Collins, P.H. Huang, C.M. Schramm, T. Nero, J. Yan, and T.S. Murray. 2022. Bacterial surface detachment during nebulization with contaminated reusable home nebulizers. Microbiol. Spectr. 10:1. doi:10.1128/spectrum.02535-21.
  • Healy, D.A., J.A. Huffman, D.J. O’Connor, C. Pöhlker, U. Pöschl, and J.R. Sodeau. 2014. Ambient measurements of biological aerosol particles near Killarney, Ireland: A comparison between real-time fluorescence and microscopy techniques. Atmos. Chem. Phys. 14 (15):8055–69. doi:10.5194/acp-14-8055-2014.
  • Hellmér, M., N. Paxéus, L. Magnius, L. Enache, B. Arnholm, A. Johansson, T. Bergström, and H. Norder. 2014. Detection of pathogenic viruses in sewage provided early warnings of hepatitis a virus and norovirus outbreaks. Appl. Environ. Microbiol. 80 (21):6771–81. doi:10.1128/AEM.01981-14.
  • Herzog, A.B., A.K. Pandey, D. Reyes-Gastelum, C.P. Gerba, J.B. Rose, and S.A. Hashsham. 2012. Evaluation of sample recovery efficiency for bacteriophage P22 on fomites. Appl. Environ. Microbiol. 78 (22):7915–22. doi:10.1128/AEM.01370-12.
  • Hinds, W.C., B.D. Beck, J.D. Brain, W.C. Hinds, S.G. Baron, and L. Weil. 1982. Aerosol technology: Properties, behavior, and measurement of airborne particles. Ann. Occup. Hyg. 26 (1–4):435–48.
  • Hindson, B.J., K.D. Ness, D.A. Masquelier, P. Belgrader, N.J. Heredia, A.J. Makarewicz, I.J. Bright, M.Y. Lucero, A.L. Hiddessen, T.C. Legler, et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83 (22):8604–10. doi:10.1021/ac202028g.
  • Ho, J. 2002. Future of biological aerosol detection. Anal. Chim. Acta 457 (1):125–48. doi:10.1016/S0003-2670(01)01592-6.
  • Ho, J., M. Spence, and P. Hairston. 1999. Measurement of biological aerosol with a Fluorescent Aerodynamic Particle Sizer (Flaps): Correlation of optical data with biological data. Aerobiologia 15 (4):281–91. doi:10.1023/A:1007647522397.
  • Hovi, T., L.M. Shulman, H. van der Avoort, J. Deshpande, M. Roivainen, and E.M. de Gourville. 2012. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol. Infect. 140 (1):1–13. doi:10.1017/S095026881000316X.
  • Huffman, J.A., and L.S. Joshua. 2017. Online techniques for quantification and characterization of biological aerosols. In Microbiology of aerosols, 83–114. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9781119132318.ch1d.
  • Huffman, J.A., A.E. Perring, N.J. Savage, B. Clot, B. Crouzy, F. Tummon, O. Shoshanim, B. Damit, J. Schneider, V. Sivaprakasam, et al. 2020. Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 54 (5):465–95. doi:10.1080/02786826.2019.1664724.
  • Huffman, J.A., and S. Ratnesar-Shumate. 2020. Preface for special issue ‘Bioaerosol research: Methods, challenges, and perspectives.’. Aerosol Sci. Technol. 54 (5):463–64. doi:10.1080/02786826.2020.1745012.
  • Huffman, J.A., B. Sinha, R.M. Garland, A. Snee-Pollmann, S.S. Gunthe, P. Artaxo, S.T. Martin, M.O. Andreae, and U. Pöschl. 2012. Size distributions and temporal variations of biological aerosol particles in the amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmos. Chem. Phys. 12 (24): 11997–19. doi:10.5194/acp-12-11997-2012.
  • Huffman, J.A., B. Treutlein, and U. Pöschl. 2010. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos. Chem. Phys. 10 (7):3215–33. doi:10.5194/acp-10-3215-2010.
  • Hybl, J.D., G.A. Lithgow, and S.G. Buckley. 2003. Laser-induced breakdown spectroscopy detection and classification of biological aerosols. Appl. Spectrosc. 57 (10):1207–15. doi:10.1366/000370203769699054.
  • Institute of Medicine (US) and National Research Council (US) Committee on Effectiveness of National Biosurveillance Systems: Biowatch and the Public Health System. 2011. Biowatch and public health surveillance: Evaluating systems for the early detection of biological threats. In BioWatch and public health surveillance, National Academies Press. doi:10.17226/12688
  • Jamal, S.M., and G.J. Belsham. 2013. Foot-and-mouth disease: Past, present and future. Vet. Res. 44 (1):116. doi:10.1186/1297-9716-44-116.
  • Julian, T.R., F.J. Tamayo, J.O. Leckie, and A.B. Boehm. 2011. Comparison of surface sampling methods for virus recovery from Fomites. Appl. Environ. Microbiol. 77 (19):6918–25. doi:10.1128/AEM.05709-11.
  • Kalume, A., Z. Gong, C. Wang, J.L. Santarpia, and Y.-L. Pan. 2018. Detection and characterization of chemical and biological aerosols using laser-trapping single-particle raman spectroscopy. WIT Trans. Ecol. Environ. 230:323–29. doi:10.2495/AIR180301.
  • Kalume, A., C. Wang, J.L. Santarpia, and Y.-L. Pan. 2018. Submicron position-resolved raman spectra for characterizing laser-trapped single airborne particles. In Optics InfoBase Conference Papers. Vol. Part F91T. doi:10.1364/TRANSLATIONAL.2018.JW3A.39.
  • Katayama, H., E. Haramoto, K. Oguma, H. Yamashita, A. Tajima, H. Nakajima, and S. Ohgaki. 2007. One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plants in Japan. Water Res. 42 (6–7):1441–48. doi:https://doi.org/10.1016/j.watres.2007.10.029.
  • Kaye, P.H., J.E. Barton, E. Hirst, and J.M. Clark. 2000. Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles. Appl. Opt. 39 (21):3738. doi:10.1364/AO.39.003738.
  • Kaye, P.H., W.R. Stanley, E. Hirst, E.V. Foot, K.L. Baxter, and S.J. Barrington. 2005. Single particle multichannel bio-aerosol fluorescence sensor. Opt Express 13 (10):3583. doi:10.1364/OPEX.13.003583.
  • Kim, K.H., E. Kabir, and S. Ara Jahan. 2018. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 67 (May):23–35. doi:10.1016/j.jes.2017.08.027.
  • Kinahan, S.M., D.B. Silcott, B.E. Silcott, R.M. Silcott, P.J. Silcott, B.J. Silcott, S.L. Distelhorst, V.L. Herrera, D.N. Rivera, K.K. Crown, et al. 2021. Aerosol tracer testing in Boeing 767 and 777 aircraft to simulate exposure potential of infectious aerosol such as SARS-CoV-2. PLoS ONE. 16 (12):e0246916. doi:10.1371/journal.pone.0246916.
  • Kinahan, S.M., M.S. Tezak, C.M. Siegrist, G. Lucero, B.L. Servantes, J.L. Santarpia, A. Kalume, J. Zhang, M. Felton, C.C. Williamson, et al. 2019. Changes of fluorescence spectra and viability from aging aerosolized E. Coli cells under various laboratory-controlled conditions in an advanced rotating drum. Aerosol. Sci. Technol. 53 (11):1261–76. doi:10.1080/02786826.2019.1653446.
  • Kleefsman, W.A., M.A. Stowers, P.J.T. Verheijen, and J.C.M. Marijnissen. 2008. Single particle mass spectrometry–bioaerosol analysis by MALDI MS. KONA Powder Part. J. 26: 205–14. doi:10.14356/kona.2008018.
  • Kleefsman, I., M.A. Stowers, P.J.T. Verheijen, A.L. van Wuijckhuijse, C.E. Kientz, and J.C.M. Marijnissen. 2007. Bioaerosol analysis by single particle mass spectrometry. Part. Part. Syst. Charact. 24 (2):85–90. doi:10.1002/ppsc.200601049.
  • Kmush, B.L., D. Monk, H. Green, D.A. Sachs, T. Zeng, and D.A. Larsen. 2022. Comparability of 24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater. FEMS Microbes 3: June. doi: 10.1093/FEMSMC/XTAC017.
  • Kokkoris, V., E. Vukicevich, A. Richards, C. Thomsen, and M.M. Hart. 2021. Challenges using droplet digital PCR for environmental samples. Appl. Microbiol. 1 (1):74–88. doi:10.3390/applmicrobiol1010007.
  • Kosowska, A., J.A. Barasona, S. Barroso-Arévalo, B. Rivera, L. Domínguez, and J.M. Sánchez-Vizcaíno. 2021. A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Sci. Rep. 11:11. doi:10.1038/s41598-021-00552-8.
  • LaTurner, Z.W., D.M. Zong, P. Kalvapalle, K. Reyes Gamas, A. Terwilliger, T. Crosby, P. Ali, V. Avadhanula, H.H. Santos, K. Weesner, et al. 2021. Evaluating recovery, cost, and throughput of different concentration methods for SARS-CoV-2 wastewater-based epidemiology. Water Res. 197 (June):117043. doi:10.1016/J.WATRES.2021.117043.
  • Laumbach, R.J., G. Mainelis, K.G. Black, N.T. Myers, P. Ohman-Strickland, S. Alimokhtari, S. Hastings, A. Legard, A. de Resende, L. Calderón, et al. 2022. Presence of SARS-CoV-2 aerosol in residences of adults with COVID-19. Ann. Am. Thorac. Soc. 19 (2):338–41. doi:10.1513/AnnalsATS.202107-847RL.
  • Lecours, B., M.V. Pascale, D. Marsolais, and C. Duchaine. 2012. Characterization of Bioaerosols from Dairy Barns: Reconstructing the Puzzle of Occupational Respiratory Diseases by Using Molecular Approaches. Appl. Environ. Microbiol. 78 (9):3242–48. doi:10.1128/AEM.07661-11.
  • Lednicky, J.A., M. Lauzardo, M.M. Alam, M.A. Elbadry, C.J. Stephenson, J.C. Gibson, and J. Glenn Morris. 2021a. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 108 (July):212–16. doi:10.1016/j.ijid.2021.04.063.
  • Lednicky, J.A., M. Lauzardo, M.M. Alam, M.A. Elbadry, C.J. Stephenson, J.C. Gibson, and J. Glenn Morris. 2021b. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 108 (July):212–16. doi:10.1016/j.ijid.2021.04.063.
  • Lednicky, J.A., Z.H.F. Michael Lauzard, A. Jutla, T.B. Tilly, M. Gangwar, M. Usmani, M. Usmani, S.N. Shankar, K. Mohamed, A. Eiguren-Fernandez, et al. 2020. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100 (November):476–82. doi:10.1016/J.IJID.2020.09.025.
  • Lednicky, J., M. Pan, J. Loeb, H. Hsieh, A. Eiguren-Fernandez, Z.H.F. Susanne Hering, and W. Chang-Yu. 2016. Highly efficient collection of infectious pandemic influenza H1N1 Virus (2009) through laminar-flow water based condensation. Aerosol Sci. Technol. 50 (7): doi:10.1080/02786826.2016.1179254. i–iv.
  • Leung, K., E. Louca, M. Gray, G. Tipples, and A.L. Coates. 2005. Use of the next generation pharmaceutical impactor for particle size distribution measurements of live viral aerosol vaccines. J. Aerosol. Med. 18 (4):414–26. doi:10.1089/jam.2005.18.414.
  • Li, C., G.W. Kattawar, and P. Yang. 2004. Effects of surface roughness on light scattering by small particles. J. Quant. Spectrosc. Radiat. Transf. 89 (1–4):123–31. doi:10.1016/j.jqsrt.2004.05.016.
  • Lindsley, W.G., F.M. Blachere, R.E. Thewlis, A. Vishnu, K.A. Davis, G. Cao, J.E. Palmer, K.E. Clark, M.A. Fisher, R. Khakoo, et al. 2010. Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS ONE. 5 (11):e15100. doi:10.1371/journal.pone.0015100.
  • Lindsley, W.G., D. Schmechel, and B.T. Chen. 2006. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. J. Environ Monitor 8 (11):1136. doi:10.1039/b609083d.
  • Liu, Y., Z. Ning, Y. Chen, M. Guo, Y. Liu, N. Kumar Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 582 (7813):557–60. doi:https://doi.org/10.1038/s41586-020-2271-3.
  • Li, J., S. Zuraimi, S. Schiavon, M. Pun Wan, J. Xiong, and K. Wai Tham. 2022. Diurnal trends of indoor and outdoor fluorescent biological aerosol particles in a tropical urban area. Sci. Total Environ. 848 (November):157811. doi:10.1016/j.scitotenv.2022.157811.
  • Machalaba, C.C., S.E. Elwood, S. Forcella, K.M. Smith, K. Hamilton, K.B. Jebara, D.E. Swayne, R.J. Webby, E. Mumford, J.A.K. Mazet, et al. 2015. Global avian influenza surveillance in wild birds: A strategy to capture viral diversity. Emerging Infect. Dis. 21:4. doi:10.3201/eid2104.141415.
  • Mainelis, G. 1999. Collection of airborne microorganisms by electrostatic precipitation. Aerosol. Sci. Technol. 30 (2):127–44. doi:10.1080/027868299304732.
  • Mainelis, G. 2020. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol. Sci. Technol. 54 (5):496–519. doi:10.1080/02786826.2019.1671950.
  • Mainelis, G., K. Willeke, A. Adhikari, T. Reponen, and S.A. Grinshpun. 2002. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol. Sci. Technol. 36 (11):1073–85. doi:10.1080/02786820290092212.
  • Manibusan, S., and G. Mainelis. 2022. Passive bioaerosol samplers: A complementary tool for bioaerosol research. A review. J. Aerosol. Sci. 163 (June):105992. doi:10.1016/j.jaerosci.2022.105992.
  • Marinova-Petkova, A., J. Laplante, Y. Jang, B. Lynch, N. Zanders, M. Rodriguez, J. Jones, S. Thor, E. Hodges, J.A. De La Cruz, et al. 2017. Avian influenza A(H7N2) virus in human exposed to sick cats, New York, USA, 2016. Emerging Infect. Dis. 23 (12):12. doi:https://doi.org/10.3201/eid2312.170798.
  • Marple, V.A., D.L. Roberts, F.J. Romay, N.C. Miller, K.G. Truman, M. van Oort, B. Olsson, M.J. Holroyd, J.P. Mitchell, and D. Hochrainer. 2003. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: Design. J. Aerosol. Med. 16 (3):283–99. doi:10.1089/089426803769017659.
  • Martin, E., N. Dziurowitz, U. Jäckel, and J. Schäfer. 2015. Detection of airborne bacteria in a duck production facility with two different personal air sampling devices for an exposure assessment. J. Occup. Environ. Hyg. 12 (2):77–86. doi:10.1080/15459624.2014.946514.
  • Marvin, L.F., M.A. Roberts, and L.B. Fay. 2003. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin. Chim. Acta 337 (1–2):11–21. doi:10.1016/j.cccn.2003.08.008.
  • Ma, J., Q. Xiao, H. Chen, L. Xinyue, Z. Zhang, H. Wang, L. Sun, L. Zhang, J. Guo, L. Morawska, et al. 2021. Coronavirus disease 2019 patients in earlier stages exhaled millions of severe acute respiratory syndrome coronavirus 2 per hour. Clin. Infect. Dis. 72 (10):e652–54. doi:10.1093/CID/CIAA1283.
  • Mayor, S.D., S.M. Spuler, and B.M. Morley. 2005. Scanning eye-safe depolarization lidar at 1.54 microns and potential usefulness in bioaerosol plume detection, ed. Upendr.N. Singh, 58870N. doi:10.1117/12.620361
  • Milton, D.K., M. Patricia Fabian, B.J. Cowling, M.L. Grantham, and J.J. McDevitt. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathog. 9 (3):e1003205. doi:10.1371/journal.ppat.1003205.
  • Misra, C., M. Singh, S. Shen, C. Sioutas, and P.M. Hall. 2002. Development and evaluation of a Personal Cascade Impactor Sampler (PCIS). J. Aerosol. Sci. 33 (7):1027–47. doi:10.1016/S0021-8502(02)00055-1.
  • Morawska, L., G.R. Johnson, Z.D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C.Y.H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol. Sci. 40 (3):256–69. doi:10.1016/J.JAEROSCI.2008.11.002.
  • Morawska, L., and D.K. Milton. 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. July. doi:10.1093/cid/ciaa939.
  • Mouchtouri, V.A., M. Koureas, M. Kyritsi, A. Vontas, L. Kourentis, S. Sapounas, G. Rigakos, E. Petinaki, S. Tsiodras, and C. Hadjichristodoulou. 2020. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health 230 (September):113599. doi:10.1016/j.ijheh.2020.113599.
  • Mubareka, S., N. Groulx, E. Savory, T. Cutts, S. Theriault, J.A. Scott, C.J. Roy, N. Turgeon, E. Bryce, G. Astrakianakis, et al. 2019. Bioaerosols and transmission, a diverse and growing community of practice. Front. Public Health 7 (February). doi: 10.3389/fpubh.2019.00023.
  • Nagda, N.L., H.E. Rector, Z. Li, and D.R. Space. 2000. Aircraft cabin air quality: A critical review of past monitoring studies. In Air quality and comfort in airliner cabins, 215-215–25. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. doi:10.1520/STP14496S
  • Nannu Shankar, S., C.T. Witanachchi, A.F. Morea, J.A. Lednicky, J.C. Loeb, M.M. Alam, Z. Hugh Fan, A. Eiguren-Fernandez, and W. Chang-Yu. 2022. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J. Aerosol. Sci. 159 (January):105870. doi:10.1016/j.jaerosci.2021.105870.
  • Nathu, V.D., J. Virkutyte, M.B. Rao, M. Nieto-Caballero, M. Hernandez, and T. Reponen. 2022. Direct-read fluorescence-based measurements of bioaerosol exposure in home healthcare. Int. J. Environ. Res. Public Health 19 (6):3613. doi:10.3390/ijerph19063613.
  • Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28 (12):63e–663. doi:10.1093/nar/28.12.e63.
  • O’Brien, K.M., and M.W. Nonnenmann. 2016. Airborne influenza a is detected in the personal breathing zone of swine veterinarians. PLoS ONE 11 (2):e0149083. doi:10.1371/journal.pone.0149083.
  • Ong, S.W.X., Y. Kim Tan, P. Ying Chia, T. Hong Lee, N. Oon Tek, M. Su Yen Wong, and K. Marimuthu. 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323 (16):1610. doi:10.1001/jama.2020.3227.
  • O’Reilly, K.M., D.J. Allen, P. Fine, and H. Asghar. 2020. The challenges of informative wastewater sampling for SARS-CoV-2 must be met: Lessons from polio eradication. The Lancet Microbe 1 (5):e189–90. doi:10.1016/S2666-5247(20)30100-2.
  • Otter, J.A., S. Yezli, J.A.G. Salkeld, and G.L. French. 2013. Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. Am. J. Infect. Control 41 (5 SUPPL):S6. doi:10.1016/J.AJIC.2012.12.004.
  • Pan, Y.L., K. Aptowicz, J. Arnold, S. Cheng, A. Kalume, P. Piedra, C. Wang, J.L. Santarpia, and G. Videen. 2022. Review of elastic light scattering from single aerosol particles and application in bioaerosol detection. J. Quant. Spectrosc. Radiat. Transf. 279 (March):108067. doi:10.1016/j.jqsrt.2022.108067.
  • Pan, M., T.S. Bonny, J. Loeb, X. Jiang, J.A. Lednicky, A. Eiguren-Fernandez, Z.H.F. Susanne Hering, and W. Chang-Yu. 2017. Collection of viable aerosolized influenza virus and other respiratory viruses in a student health care center through water-based condensation growth. MSphere 2:5. doi:10.1128/mSphere.00251-17.
  • Pan, M., L. Carol, J.A. Lednicky, A. Eiguren-Fernandez, Z.H.F. Susanne Hering, and W. Chang-Yu. 2018. Collection of airborne bacteria and yeast through water-based condensational growth. Aerobiologia 34 (3):337–48. doi:10.1007/s10453-018-9517-7.
  • Pan, M., A. Eiguren‐fernandez, H. Hsieh, N. Afshar‐mohajer, S.V. Hering, J. Lednicky, Z. Hugh Fan, and C.Y. Wu. 2016. Efficient Collection of Viable Virus Aerosol through Laminar‐flow, Water‐based Condensational Particle Growth. J. Appl. Microbiol. 120 (3):805–15. doi:10.1111/jam.13051.
  • Pan, Y.L., J. Hartings, R.G. Pinnick, S.C. Hill, J. Halverson, and R.K. Chang. 2003. Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci. Technol. 37 (8):628–39. doi:10.1080/02786820300904.
  • Pan, Y.-L., S.C. Hill, R.G. Pinnick, J.L. Santarpia, N. Baker, B. Alvarez, S. Ratnesar-Shumate, B. Cottrell, and L. McKee. 2011. “Fluorescence spectra of bioaerosols exposed to Ozone in a laboratory reaction chamber to simulate atmospheric processing.” In Proceedings of SPIE - The international society for optical engineering. Vol. 8018. doi:10.1117/12.883417.
  • Pan, Y.-L., S.C. Hill, J.L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, C. Williamson, K. Gurton, M. Felton, R.G. Pinnick, et al. 2014. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 Laboratory. Opt. Express. 22 (7):8165–89. doi:10.1364/OE.22.008165.
  • Pan, Y.L., S. Holler, R.K. Chang, S.C. Hill, R.G. Pinnick, S. Niles, and J.R. Bottiger. 1999. Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-Nm ultraviolet laser. Opt. Lett. 24 (2):116. doi:10.1364/OL.24.000116.
  • Pan, Y.-L., J.L. Santarpia, S. Ratnesar-Shumate, E. Corson, J. Eshbaugh, S.C. Hill, C.C. Williamson, M. Coleman, C. Bare, and S. Kinahan. 2014. Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J. Quant. Spectrosc. Radiat. Transf. 133:538–50. doi:10.1016/j.jqsrt.2013.09.017.
  • Pan, Y.L., A. Kalume, J. Arnold, L. Beresnev, C. Wang, D.N. Rivera, K.K. Crown, and J.L. Santarpia. 2022. Measurement of Circular Intensity Differential Scattering (CIDS) from single airborne aerosol particles for bioaerosol detection and identification. Opt Express 30 (2):1442. doi:10.1364/OE.448288.
  • Pan, Y.L., A. Kalume, C. Wang, and J.L. Santarpia. 2021. Atmospheric aging processes of bioaerosols under laboratory-controlled conditions: A review. J. Aerosol. Sci. 155 (June):105767. doi:10.1016/j.jaerosci.2021.105767.
  • Pan, Y.L., R.G. Pinnick, S.C. Hill, J.M. Rosen, and R.K. Chang. 2007. Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. J. Geophys. Res. 112 (D24):D24S19. doi:10.1029/2007JD008741.
  • Park, G.W., P. Chhabra, and J. Vinjé. 2017. Swab sampling method for the detection of human norovirus on surfaces. JoVe 2017 (120):e55205. doi:10.3791/55205-v.
  • Peak, N., C.W. Knapp, R.K. Yang, M.M. Hanfelt, M.S. Smith, D.S. Aga, and D.W. Graham. 2007. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ. Microbiol. 9 (1):143–51. doi:10.1111/j.1462-2920.2006.01123.x.
  • Pinnick, R.G., S.C. Hill, P. Nachman, G. Videen, G. Chen, and R.K. Chang. 1998. Aerosol fluorescence spectrum analyzer for rapid measurement of single micrometer-sized airborne biological particles. Aerosol Sci. Technol. 28 (2):95–104. doi:10.1080/02786829808965514.
  • Pinnick, R.G., S.C. Hill, Y.L. Pan, and R.K. Chang. 2004. Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: Measurement and classification of single particles containing organic carbon. Atmos. Environ. 38 (11):1657–72. doi:10.1016/j.atmosenv.2003.11.017.
  • Pochtovyi, A.A., V.V. Bacalin, N.A. Kuznetsova, M.A. Nikiforova, E.V. Shidlovskaya, B.I. Verdiev, E.N. Milashenko, A.M. Shchetinin, O.A. Burgasova, L.V. Kolobukhina, et al. 2021. SARS-CoV-2 aerosol and surface contamination in health care settings: The Moscow pilot study. Aerosol. Air Qual. Res. 21 (4):200604. doi:10.4209/aaqr.200604.
  • Priyamvada, H., K. Kumaragama, A. Chrzan, C. Athukorala, S. Sur, and S. Dhaniyala. 2021. Design and evaluation of a new electrostatic precipitation-based portable low-cost sampler for bioaerosol monitoring. Aerosol Sci. Technol. 55 (1):24–36. doi:10.1080/02786826.2020.1812503.
  • Prost, K., H. Kloeze, S. Mukhi, K. Bozek, Z. Poljak, and S. Mubareka. 2019. Bioaerosol and surface sampling for the surveillance of influenza a virus in swine. Transbound Emerg Dis 66:1210–17. doi:10.1111/tbed.13139.
  • Rafiee, M., S. Isazadeh, A. Mohseni-Bandpei, S. Reza Mohebbi, M. Jahangiri-Rad, A. Eslami, H. Dabiri, K. Roostaei, M. Tanhaei, and F. Amereh. 2021. Moore swab performs equal to composite and outperforms grab sampling for SARS-CoV-2 monitoring in wastewater. Sci. Total Environ. 790 (October). doi: 10.1016/J.SCITOTENV.2021.148205.
  • Ratnesar-Shumate, S., K. Bohannon, G. Williams, B. Holland, M. Krause, B. Green, D. Freeburger, and P. Dabisch. 2021. Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. Aerosol. Sci. Technol. 55 (8):975–86. doi:10.1080/02786826.2021.1910137.
  • Ratnesar-Shumate, S., Y.-L. Pan, S.C. Hill, S. Kinahan, E. Corson, J. Eshbaugh, and L.S. Joshua. 2015. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum. J. Quant. Spectrosc. Radiat. Transf. 153:13–28. doi:10.1016/j.jqsrt.2014.10.003.
  • Ratnesar-Shumate, S., M.L. Wagner, C. Kerechanin, G. House, K.M. Brinkley, C. Bare, N.A. Baker, R. Quizon, J. Quizon, A. Proescher, et al. 2011. Improved method for the evaluation of real-time biological aerosol detection technologies. Aerosol. Sci. Technol. 45 (5):635–44. doi:https://doi.org/10.1080/02786826.2010.551144.
  • Rehse, S.J. 2019. A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification. Spectrochim Acta Part B 154 (April):50–69. doi:10.1016/j.sab.2019.02.005.
  • Richardson, S.C., M. Mytilinaios, R. Foskinis, C. Kyrou, A. Papayannis, I. Pyrri, E. Giannoutsou, and I.D.S. Adamakis. 2019. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique. Sci. Total Environ. 696 (December):133906. doi:10.1016/j.scitotenv.2019.133906.
  • Rodríguez, M., M. Llanos Palop, S. Seseña, and A. Rodríguez. 2021. Are the Portable Air Cleaners (PAC) really effective to terminate airborne SARS-CoV-2? Sci. Total Environ. 785 (September):147300. doi:10.1016/j.scitotenv.2021.147300.
  • Roy, G. 2010. Lidar polarization discrimination of bioaerosols. Opt. Eng. 49 (11):116201. doi:10.1117/1.3505877.
  • Russell, S.C., G. Czerwieniec, C. Lebrilla, H. Tobias, D.P. Fergenson, P. Steele, M. Pitesky, J. Horn, A. Srivastava, M. Frank, et al. 2004. Toward understanding the ionization of biomarkers from micrometer particles by bio-aerosol mass spectrometry. J. Am. Soc. Mass Spectrom. 15 (6):900–09. doi:10.1016/j.jasms.2004.02.013.
  • Russo, G.B., T. Goyal, K. Tyler, and K.T. Thakur. 2022. Re‐emergence of poliovirus in the United States: Considerations and implications. Ann. Neurol. 92 (5):725–28. doi:10.1002/ana.26504.
  • Saéz, M., S.W. Almudena, K. Nowak, V. Lapeyre, F. Zimmermann, A. Düx, H.S. Kühl, M. Kaba, S. Regnaut, K. Merkel, et al. 2015. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 7 (1):17–23. doi:10.15252/emmm.201404792.
  • Santander, M.V., B.A. Mitts, M.A. Pendergraft, J. Dinasquet, C. Lee, A.N. Moore, L.B. Cancelada, K.A. Kimble, F. Malfatti, and K.A. Prather. 2021. Tandem fluorescence measurements of organic matter and bacteria released in sea spray aerosols. Environ. Sci. Technol. 55 (8):5171–79. doi:10.1021/acs.est.0c05493.
  • Santarpia, J.L. 2016. Bioaerosols in the environment: Populations, measurement and processes. Issues Toxicol. Vol. 2016 Janua. doi:10.1039/9781849737913-00219.
  • Santarpia, J.L., D.R. Collins, S.A. Ratnesar-Shumate, C.C. Glen, A.L. Sanchez, C.G. Antonietti, J. Taylor, N.F. Taylor, C.A. Bare, S.M. Kinahan, et al. 2022. Changes in the fluorescence of biological particles exposed to environmental conditions in the national capitol region. Atmosphere. 13 (9):1358. doi:10.3390/atmos13091358.
  • Santarpia, J.L., V.L. Herrera, D.N. Rivera, S. Ratnesar-Shumate, S. Patrick Reid, D.N. Ackerman, P.W. Denton, J.W.S. Martens, Y. Fang, N. Conoan, et al. 2022. The size and culturability of patient-generated SARS-CoV-2 aerosol. J. Expo. Sci. Environ. Epidemiol. 32 (5):706–11. doi:10.1038/s41370-021-00376-8.
  • Santarpia, J.L., Y.-L. Pan, S.C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R.G. Pinnick. 2012. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. Opt. Express. 20 (28):29867–81. doi:10.1364/OE.20.029867.
  • Santarpia, J.L., S. Ratnesar-Shumate, J.U. Gilberry, and J.J. Quizon. 2013. Relationship between biologically fluorescent aerosol and local meteorological conditions. Aerosol Sci. Technol. 47 (6):655–61. doi:10.1080/02786826.2013.781263.
  • Santarpia, J.L., D.N. Rivera, V.L. Herrera, M. Jane Morwitzer, H.M. Creager, G.W. Santarpia, K.K. Crown, D.M. Brett-Major, E.R. Schnaubelt, M.J. Broadhurst, et al. 2020. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 10 (1):12732. doi:10.1038/s41598-020-69286-3.
  • Šantl-Temkiv, T., B. Sikoparija, T. Maki, F. Carotenuto, P. Amato, M. Yao, C.E. Morris, R. Schnell, R. Jaenicke, C. Pöhlker, et al. 2020. Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Sci. Technol. 54 (5):520–46. doi:10.1080/02786826.2019.1676395.
  • Savage, N.J., C.E. Krentz, T. Könemann, T.T. Han, G. Mainelis, C. Pöhlker, and J. Alex Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the Wideband Integrated Bioaerosol Sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–302. doi:10.5194/amt-10-4279-2017.
  • Scherer, K., A.D. Mäde, A.L. Ellerbroek, A.J. Schulenburg, A.R. Johne, and A.G. Klein. 2009. Application of a swab sampling method for the detection of norovirus and rotavirus on artificially contaminated food and environmental surfaces. Food Environ. Virol. 1 (1):42–49. doi:https://doi.org/10.1007/s12560-008-9007-0.
  • Schmidt, M.S., and A.J. Ray Bauer. 2010. Preliminary correlations of feature strength in spark-induced breakdown spectroscopy of bioaerosols with concentrations measured in laboratory analyses. Appl. Opt. 49 (13):C101. doi:10.1364/AO.49.00C101.
  • Sehulster, L.M., R.Y.W. Chinn, M.J. Arduino, J. Carpenter, R. Donlan, D. Ashford, R. Besser. 2004. Guidelines for environmental infection control in health-care facilities. Recommendations from CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). Chicago IL. https://www.cdc.gov/infectioncontrol/guidelines/environmental/index.html
  • Sengupta, A., M.L. Laucks, N. Dildine, E. Drapala, and E.J. Davis. 2005. Bioaerosol characterization by Surface-Enhanced Raman Spectroscopy (SERS). J. Aerosol. Sci. 36 (5–6):651–64. doi:10.1016/j.jaerosci.2004.11.001.
  • Shammi, M., M. Mostafizur Rahman, and S. Mohammad Tareq. 2021. Distribution of bioaerosols in association with particulate matter: A review on emerging public health threat in Asian Megacities. Front. Environ. Sci. 9 (August). doi: 10.3389/fenvs.2021.698215.
  • Shannon, K.E., D.Y. Lee, J.T. Trevors, and L.A. Beaudette. 2007. Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Sci. Total Environ. 382 (1):121–29. doi:10.1016/J.SCITOTENV.2007.02.039.
  • Shapiro, D.B., M.F. Maestre, W.M. McClain, P.G. Hull, Y. Shi, M.S. Quinby-Hunt, J.E. Hearst, and A.J. Hunt. 1994. Determination of the average orientation of DNA in the octopus sperm Eledone cirrhossa through polarized light scattering. Appl. Opt. 33 (24):5733. doi:10.1364/AO.33.005733.
  • Sharma, R., R. Ranjan, R. Kishor Kapardar, and A. Grover. 2005. ‘Unculturable’ bacterial diversity: An untapped resource. Curr. Sci. 89 (1): 72–77.
  • Shoshanim, O., and A. Baratz. 2020. Daytime measurements of bioaerosol simulants using a hyperspectral laser-induced fluorescence LIDAR for biosphere research. J. Environ. Chem. Eng. 8 (5):104392. doi:10.1016/j.jece.2020.104392.
  • Silvestri, E., Y. Chambers-Velarde, J. Chandler, J. Cuddeback, W. Calfee, J. Archer, and S. Shah. 2021. Collection of surface samples potentially contaminated with microbiological agents using swabs, sponge sticks and wipes. Washington, DC. https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=352038&Lab=CESER.
  • Singh, M., C. Misra, and C. Sioutas. 2003. Field evaluation of a Personal Cascade Impactor Sampler (PCIS). Atmos. Environ. 37 (34):4781–93. doi:10.1016/j.atmosenv.2003.08.013.
  • Sinha, M.P., R.M. Platz, V.L. Vilker, and S.K. Friedlander. 1984. Analysis of individual biological particles by mass spectrometry. Int. J. Mass Spectrom. Ion Process. 57 (1):125–33. doi:10.1016/0168-1176(84)85070-3.
  • Sivaprakasam, V., A.L. Huston, C. Scotto, and J.D. Eversole. 2004. Multiple UV wavelength excitation and fluorescence of bioaerosols. Opt. Express 12 (19):4457. doi:10.1364/OPEX.12.004457.
  • Sivaprakasam, V., H.B. Lin, A.L. Huston, and J.D. Eversole. 2011. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements. Opt. Express 19 (7):6191. doi:10.1364/OE.19.006191.
  • Sloot, P.M.A., A.G. Hoekstra, H. van der Liet, and C.G. Figdor. 1989. Scattering matrix elements of biological particles measured in a flow through system: Theory and practice. Appl. Opt. 28 (10):1752. doi:10.1364/AO.28.001752.
  • Stowers, M.A., A.L. van Wuijckhuijse, J.C.M. Marijnissen, C.E. Kientz, and T. Ciach. 2006. Fluorescence preselection of bioaerosol for single-particle mass spectrometry. Appl. Opt. 45 (33):8531. doi:10.1364/AO.45.008531.
  • Su, C., J. Lau, and Y. Fang. 2017. A case study of upper-room UVGI in densely-occupied elementary classrooms by real-time fluorescent bioaerosol measurements. Int. J. Environ. Res. Public Health 14 (1):51. doi:10.3390/ijerph14010051.
  • Taku, A., B.R. Gulati, P.B. Allwood, K. Palazzi, C.W. Hedberg, and S.M. Goyal. 2002. Concentration and detection of caliciviruses from food contact surfaces. J. Food Prot. 65 (6):999–1004. http://meridian.allenpress.com/jfp/article-pdf/65/6/999/1672215/0362-028x-65_6_999.pdf.
  • Tanaka, N. 2021. Real-time monitoring of bioaerosol in a residential property in Central Tokyo. Asian J. Atmos. Environ. 15 (3):45–55. doi:10.5572/ajae.2021.055.
  • Tang, S., Y. Mao, R.M. Jones, Q. Tan, J.S. Ji, N. Li, J. Shen, Y. Lv, L. Pan, P. Ding, et al. 2020. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int. 144 (November):106039. doi:10.1016/j.envint.2020.106039.
  • Therkorn, J., D. Drewry III, T. Pilholski, K. Shaw‐saliba, G. Bova, L.L. Maragakis, B. Garibaldi, and L. Sauer. 2019. Impact of air‐handling system exhaust failure on dissemination pattern of simulant pathogen particles in a clinical biocontainment unit. Indoor Air 29 (1):143–55. doi:10.1111/ina.12506.
  • Therkorn, J., N. Thomas, J. Scheinbeim, and G. Mainelis. 2017. Field performance of a novel passive bioaerosol sampler using polarized ferroelectric polymer films. Aerosol Sci. Technol. 51 (7):787–800. doi:10.1080/02786826.2017.1316830.
  • Tobias, H.J., M.P. Schafer, M. Pitesky, D.P. Fergenson, J. Horn, M. Frank, and E.E. Gard. 2005. Bioaerosol mass spectrometry for rapid detection of individual airborne Mycobacterium Tuberculosis H37Ra particles. Appl. Environ. Microbiol. 71 (10):6086–95. doi:10.1128/AEM.71.10.6086-6095.2005.
  • Toprak, E., and M. Schnaiter. 2013. Fluorescent biological aerosol particles measured with the waveband integrated bioaerosol sensor WIBS-4: Laboratory tests combined with a one year field study. Atmos. Chem. Phys. 13 (1):225–43. doi:10.5194/acp-13-225-2013.
  • Tripathi, A., R.E. Jabbour, J.A. Guicheteau, S.D. Christesen, D.K. Emge, A.W. Fountain, J.R. Bottiger, E.D. Emmons, and A. Peter Snyder. 2009. Bioaerosol analysis with raman chemical imaging microspectroscopy. Anal. Chem. 81 (16):6981–90. doi:10.1021/ac901074c.
  • Ugarte-Ruiz, M., D. Florez-Cuadrado, T.M. Wassenaar, M. Concepción Porrero, and L. Domínguez. 2015. Method comparison for enhanced recovery, isolation and qualitative detection of C. Jejuni and C. Coli from Wastewater Effluent Samples. Int. J. Environ. Res. Public Health 12:2749–64. doi:10.3390/ijerph120302749.
  • U.S. Environmental Protection Agency. Region VII. 1974. Wastewater sampling methodologies and flow measurement techniques - United States. Environ. Prot. Agency Region VII. - Google Books. https://books.google.com/books?hl=en&lr=&id=SF3L6PsBGRcC&oi=fnd&pg=PR7&dq=wastewater+sampling&ots=FklsBFP0c1&sig=85RlGsLvr47zLV7CXXXydrqrnT8#v=onepage&q=wastewater%20sampling&f=false
  • van Wuijckhuijse, A.L., M.A. Stowers, W.A. Kleefsman, B.L.M. van Baar, C.E. Kientz, and J.C.M. Marijnissen. 2005. Matrix-assisted laser desorption/ionisation aerosol time-of-flight mass spectrometry for the analysis of bioaerosols: Development of a fast detector for airborne biological pathogens. J. Aerosol. Sci. 36 (5–6):677–87. doi:10.1016/j.jaerosci.2004.11.003.
  • Walls, H.J., D.S. Ensor, L.A. Harvey, J.H. Kim, R.T. Chartier, S.V. Hering, S.R. Spielman, and G.S. Lewis. 2016. Generation and sampling of nanoscale infectious viral aerosols. Aerosol Sci. Technol. 50 (8):802–11. doi:10.1080/02786826.2016.1191617.
  • Wang, C., Y.L. Pan, S.C. Hill, and B. Redding. 2015. Photophoretic trapping-raman spectroscopy for single pollens and fungal spores trapped in air. J. Quant. Spectrosc. Radiat. Transf. 153 (March):4–12. doi:10.1016/j.jqsrt.2014.11.004.
  • Wastewater-Based Disease Surveillance for Public Health Action. 2023. Washington, D.C: National Academies Press. doi:10.17226/26767.
  • World Health Organization (WHO). 2020. Surface sampling of coronavirus disease (COVID-19): A practical ‘how to’ protocol for health care and public health professionals.
  • The World Organisation for Animal Health. 2022. Terrestrial animal health code: Chapter 1.4. Anim. Health Surv. 1:1–10.
  • Wu, F., A. Xiao, J. Zhang, K. Moniz, N. Endo, F. Armas, M. Bushman. 2021. Wastewater surveillance of SARS-CoV-2 across 40 U.S. States from February to June 2020. Water Res. 202 (September):117400. doi:10.1016/j.watres.2021.117400.
  • Yamagishi, T., M. Ohnishi, N. Matsunaga, K. Kakimoto, H. Kamiya, K. Okamoto, M. Suzuki, Y. Gu, M. Sakaguchi, T. Tajima, et al. 2020. Environmental sampling for severe acute respiratory syndrome coronavirus 2 during a COVID-19 outbreak on the diamond princess cruise ship. Brief Rep. J. Infect. Dis.® 2020:222. doi:10.1093/infdis/jiaa437.
  • Yang, S., G. Bekö, P. Wargocki, J. Williams, and D. Licina. 2021. Human emissions of size-resolved fluorescent aerosol particles: Influence of personal and environmental factors. Environ. Sci. Technol. 55 (1):509–18. doi:10.1021/acs.est.0c06304.
  • Yin, L., S. Man, Y. Shengying, G. Liu, and M. Long. 2021. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens. Bioelectron. 193 (December):113541. doi:10.1016/j.bios.2021.113541.