447
Views
0
CrossRef citations to date
0
Altmetric
2024 A&WMA CRITICAL REVIEW

Atmospheric reduced nitrogen: Sources, transformations, effects, and management

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 362-415 | Received 16 Jan 2024, Accepted 02 Apr 2024, Published online: 31 May 2024

References

  • Abbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Mahler. 2006. Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science 313 (5794):1770–73. doi:10.1126/science.1129726.
  • Aber, J. D., C. L. Goodale, S. V. Ollinger, M.-L. Smith, A. H. Magill, M. E. Martin, R. A. Hallett, and J. L. Stoddard. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53 (4):375–89. doi:10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2.
  • Aber, J., W. McDowell, K. Nadelhoffer, A. Magill, G. Berntson, M. Kamakea, S. McNulty, W. Currie, L. Rustad, and I. Fernandez. 1998. Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited. Bioscience 48 (11):921–34. doi:10.2307/1313296.
  • Adams, C., C. A. McLinden, M. W. Shephard, N. Dickson, E. Dammers, J. Chen, P. Makar, K. E. Cady-Pereira, N. Tam, S. K. Kharol, et al. 2019. Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 horse River wildfire in the Fort McMurray area. Atmos. Chem. Phys. 19 (4):2577–99. doi:10.5194/acp-19-2577-2019.
  • Agency for Toxic Substances and Disease Registry and U.S. Department of Health and Human Services. 2004. Toxicological profile for ammonia. https://www.atsdr.cdc.gov/hs/hsees/annual2004.html.
  • Alexander, R. B., R. A. Smith, G. E. Schwarz, S. D. Preston, J. W. Brakebill, R. Srinivasan, and P. A. Pacheco. 2001. Atmospheric nitrogen flux from the watersheds of major estuaries of the United States: An application of the SPARROW watershed model. Nitrogen loading in coastal water bodies: An atmospheric perspective. Coastal Estuarine Stud. 57:119–70.
  • Almuhanna, E. A., A. S. Ahmed, and Y. M. Al-Yousif. 2011. Effect of air contaminants on Poultry immunological and production performance. Int. J. Poult. Sci. 10 (6):461–70. doi:10.3923/ijps.2011.461.470.
  • American Conference of Governmental Industrial Hygienists. 2001a. Documentation of the TLVs and BEIs with other worldwide occupational exposure values. 7th ed. Ohio: American Conference of Governmental Industrial Hygienists Cincinnati.
  • American Conference of Governmental Industrial Hygienists. 2001b. Threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH.
  • Aneja, V. P., W. H. Schlesinger, and J. W. Erisman. 2008. Farming pollution. Nat. Geosci. 1 (7):409–11. doi:10.1038/ngeo236.
  • Aneja, V. P., W. H. Schlesinger, and J. W. Erisman. 2009. Effects of agriculture upon the air quality and climate: Research, policy, and regulations. Environ. Sci. Technol. 43 (12):4234–40. doi:10.1021/es8024403.
  • Animal Legal Defense Fund & groups (ALDF). 2021. Petition to rescind the air consent agreement and enforce clean air laws against animal feeding operations. https://aldf.org/case/urging-the-environmental-protection-agency-to-stop-giving-factory-farms-a-free-pass-on-air-pollution/.
  • Asman, W. A. H., E. F. Pinksterboer, H. F. M. Maas, J.-W. Erisman, A. Waijers-Ypelaan, J. Slanina, and T. W. Horst. 1989. Gradients of the ammonia concentration in a nature reserve: Model results and measurements. Atmos. Environ. 23 (10):2259–65. doi:10.1016/0004-6981(89)90188-1.
  • Averill, C., M. C. Dietze, and J. M. Bhatnagar. 2018. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biol. 24 (10):4544–53. doi:10.1111/gcb.14368.
  • Baker, B. C., A. E. Wilson, and J. T. Scott. 2018. Phytoplankton N2-fixation efficiency and its effect on harmful algal blooms. Freshw. Sci. 37 (2):264–75. doi:10.1086/697530.
  • Balasubramanian, S., D. M. McFarland, S. Koloutsou-Vakakis, K. Fu, R. Menon, C. Lehmann, and M. J. Rood. 2020. Effect of grid resolution and spatial representation of NH3 emissions from fertilizer application on predictions of NH3 and PM2.5 concentrations in the United States Corn Belt. Environ. Res. Commun. 2:025001. doi:10.1088/2515-7620/ab6c01.
  • Baldigo, B. P., S. D. George, T. J. Sullivan, C. T. Driscoll, D. A. Burns, S. Shao, and G. B. Lawrence. 2019. Probabilistic relations between acid–base chemistry and fish assemblages in streams of the western Adirondack Mountains, New York, USA. Can. J. Fish. Aquat. Sci. 76 (11):2013–26. doi:10.1139/cjfas-2018-0260.
  • Baron, J. S., C. T. Driscoll, J. L. Stoddard, and E. E. Richer. 2011. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience. 61 (8):602–13. doi:10.1525/bio.2011.61.8.6.
  • Bash, J. O., E. J. Cooter, R. L. Dennis, J. T. Walker, and J. E. Pleim. 2013. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model. Biogeosciences. 10 (3):1635–45. doi:10.5194/bg-10-1635-2013.
  • Bash, J. O., C. Flechard, M. Adon, P. Cellier, J. L. Drouet, S. Genermont, B. Grosz, L. Horvath, R.-S. Massad, M. A. Sutton, et al. 2015. Modelling the air–surface exchange of ammonia from the field to global scale. In Review and integration of biosphere-atmosphere modelling of reactive trace gases and volatile aerosols, ed. R.-S. Massad and B. Loubet, 153–61. Dordrecht: Springer.
  • Bauer, S. E., K. Tsigaridis, and R. Miller. 2016. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 43 (10):5394–400. doi:10.1002/2016GL068354.
  • Beachley, G. M., C. M. Rogers, T. F. Lavery, J. T. Walker, and M. A. Puchalski. 2019. Long-term trends in reactive nitrogen deposition in the United States. EM Magazine. 1:1–13.
  • Beem, K. B., S. Raja, F. M. Schwandner, C. Taylor, T. Lee, A. P. Sullivan, C. M. Carrico, G. R. McMeeking, D. Day, E. Levin, et al. 2010. Deposition of reactive nitrogen during the rocky mountain airborne nitrogen and sulfur (RoMANS) study. Environ. Pollut. 158 (3):862–72. doi:10.1016/j.envpol.2009.09.023.
  • Beer, R., M. W. Shephard, S. S. Kulawik, S. A. Clough, A. Eldering, K. W. Bowman, S.P. Sander, B. M. Fisher, V. H. Payne, M. Luo, et al. 2008. First satellite observations of lower tropospheric ammonia and methanol. Geophys. Res. Lett. 35 (9). doi: 10.1029/2008GL033642.
  • Behera, S. N., M. Sharma, V. P. Aneja, and R. Balasubramanian. 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20 (11):8092–131. doi:10.1007/s11356-013-2051-9.
  • Bell, D. M., D. Imre, S. T. Martin, and A. Zelenyuk. 2017. The properties and behavior of α-pinene secondary organic aerosol particles exposed to ammonia under dry conditions. Phys. Chem. Chem. Phys. 19 (9):6497–507. doi:10.1039/C6CP08839B.
  • Bellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher. 2011. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J. Geophys. Res. 116 (D20). doi:10.1029/2011JD016074.
  • Benedict, K. B., D. Day, F. M. Schwandner, S. M. Kreidenweis, B. Schichtel, W. C. Malm, and J. L. Collett. 2013. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmos. Environ. 64:66–76. doi:10.1016/j.atmosenv.2012.08.066.
  • Benish, S. E., J. O. Bash, K. M. Foley, K. W. Appel, C. Hogrefe, R. Gilliam, and G. Pouliot. 2022. Long-term regional trends of nitrogen and sulfur deposition in the United States from 2002 to 2017. Atmos. Chem. Phys. 22 (19):12749–67. doi:10.5194/acp-22-12749-2022.
  • Bergstrom, A. K., and M. Jansson. 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biol. 12 (4):635–43. doi:10.1111/j.1365-2486.2006.01129.x.
  • Berner, A. H., and J. David Felix. 2020. Investigating ammonia emissions in a coastal urban airshed using stable isotope techniques. Sci. Total Environ 707:134952. doi:10.1016/j.scitotenv.2019.134952.
  • Bessagnet, B., M. Beauchamp, C. Guerreiro, F. de Leeuw, S. Tsyro, A. Colette, F. D. R. Meleux, L. Rou├»l, P. Ruyssenaars, F. Sauter, et al. 2014. Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards? Environ. Sci. Policy 44:149–63. doi:10.1016/j.envsci.2014.07.011.
  • Bian, H., M. Chin, D. A. Hauglustaine, M. Schulz, G. Myhre, S. E. Bauer, M. T. Lund, V. A. Karydis, T.L. Kucsera, X. Pan, et al. 2017. Investigation of global particulate nitrate from the AeroCom phase III experiment. Atmos. Chem. Phys. 17 (21):12911–40. doi:10.5194/acp-17-12911-2017.
  • Bishop, G. A., and D. H. Stedman. 2015. Reactive nitrogen species emission trends in three light-/medium-duty United States fleets. Environ. Sci. Technol. 49 (18):11234–40. doi:10.1021/acs.est.5b02392.
  • Blett, T. F., J. A. Lynch, L. H. Pardo, C. Huber, R. Haeuber, and R. Pouyat. 2014. FOCUS: A pilot study for national-scale critical loads development in the United States. Environ. Sci. Policy 38:225–36. doi:10.1016/j.envsci.2013.12.005.
  • Bloom, A. J., S. S. Sukrapanna, and R. L. Warner. 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99 (4):1294–301. doi:10.1104/pp.99.4.1294.
  • Bobbink, R., K. Hicks, J. Galloway, T. Spranger, R. Alkemade, M. Ashmore, M. Bustamante, S. Cinderby, E. Davidson, F. Dentener, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 20 (1):30–59. doi:10.1890/08-1140.1.
  • Bobbink, R., C. Loran, and H. Tomassen. 2022. Explanations for nitrogen decline. Science (New York, N.Y.) 376 (6598):1169–70. https://www.umweltbundesamt.de/en/publikationen/review-revision-of-empirical-critical-loads-of.
  • Bogard, M., R. J. Vogt, N. M. Hayes, and P. Leavitt. 2020. Unabated nitrogen pollution favours growth of toxic cyanobacteria over chlorophytes in most hypereutrophic lakes. Environ. Sci. Technol. 54 (6):3219–27. doi:10.1021/acs.est.9b06299.
  • Bones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov. 2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4±mediated chemical aging over long time scales. J. Geophys. Res. 115 (D5). doi:10.1029/2009JD012864.
  • Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J. G. J. Olivier. 1997. A global high-resolution emission inventory for ammonia. Global Biogeochem. Cycles 11 (4):561–87. doi:10.1029/97GB02266.
  • Bowman, W. D., A. Ayyad, C. P. Bueno de Mesquita, N. Fierer, T. S. Potter, and S. Sternagel. 2018. Limited ecosystem recovery from simulated chronic nitrogen deposition. Ecol. Appl. 28 (7):1762–72. doi:10.1002/eap.1783.
  • Boyer, E. W., C. L. Goodale, N. A. Jaworski, and R. W. Howarth. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57 (1):137–69. doi:10.1023/A:1015709302073.
  • Brandani, C. B., M. Lee, B. W. Auvermann, D. B. Parker, K. D. Casey, E. T. Crosman, V. N. Gouva, M. R. Beck, K. J. Bush, J. A. Koziel, et al. 2023. Mitigating ammonia deposition derived from open-lot livestock facilities into Colorado’s Rocky Mountain National Park: State of the science. Atmosphere 14 (10):1469. doi:10.3390/atmos14101469.
  • Bricker, S. B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful. Algae. 8 (1):21–32. doi:10.1016/j.hal.2008.08.028.
  • Burns, D. A., G. Bhatt, L. C. Linker, J. O. Bash, P. B. Capel, and G. W. Shenk. 2021. Atmospheric nitrogen deposition in the Chesapeake Bay watershed: A history of change. Atmos. Environ. 251:118277. doi:10.1016/j.atmosenv.2021.118277.
  • Burns, A. M., G. Chandler, K. J. Dunham, and A. G. Carlton. 2023. Data gap: Air quality networks Miss air pollution from concentrated animal feeding operations. Environ. Sci. Technol. 57 (49):20718–25. doi:10.1021/acs.est.3c06947.
  • Butler, T., F. Vermeylen, C. M. Lehmann, G. E. Likens, and M. Puchalski. 2016. Increasing ammonia concentration trends in large regions of the USA derived from the NADP/AMoN network. Atmos. Environ. 146:132–40. doi:10.1016/j.atmosenv.2016.06.033.
  • Byrnes, D. K., K. J. Van Meter, and N. B. Basu. 2020. Long‐term shifts in U.S. nitrogen sources and sinks revealed by the new TREND‐nitrogen data set (1930–2017). Global Biogeochem. Cycles. 34 (9). doi: 10.1029/2020gb006626.
  • Cady-Pereira, K. E., X. Guo, R. Wang, A. B. Leytem, C. Calkins, E. Berry, K. Sun, M. Müller, A. Wisthaler, V. H. Payne, et al. 2024. Validation of MUSES NH3 observations from AIRS and CrIS against aircraft measurements from DISCOVER-AQ and a surface network in the Magic Valley. Atmos. Meas. Tech. 17 (1):15–36. doi:10.5194/amt-17-15-2024.
  • Cao, H., D. K. Henze, K. Cady-Pereira, B. C. McDonald, C. Harkins, K. Sun, K. W. Bowman, T.-M. Fu, and M. O. Nawaz. 2022. COVID-19 lockdowns afford the first satellite-based confirmation that vehicles are an under-recognized source of urban NH3 pollution in Los Angeles. Environ. Sci. Technol. Lett. 9 (1):3–9. doi:10.1021/acs.estlett.1c00730.
  • Cao, H., D. K. Henze, M. W. Shephard, E. Dammers, K. Cady-Pereira, M. Alvarado, C. Lonsdale, G. Luo, F. Yu, L. Zhu, et al. 2020. Inverse modeling of NH3 sources using CrIS remote sensing measurements. Environ. Res. Lett. 15 (10):104082. doi:10.1088/1748-9326/abb5cc.
  • Cao, H., D. K. Henze, L. Zhu, M. W. Shephard, K. Cady-Pereira, E. Dammers, M. Sitwell, N. Heath, C. Lonsdale, J. O. Bash, et al. 2022. 4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-chem adjoint with bi-directional and uni-directional flux schemes. J. Geophys. Res. 127 (9):e2021JD035687. doi:10.1029/2021JD035687.
  • Carter, T. S., C. M. Clark, M. E. Fenn, S. Jovan, S. S. Perakis, J. Riddell, P. G. Schaberg, T. L. Greaver, and M. G. Hastings. 2017. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees. Ecosphere. 8 (3):e01717. doi:10.1002/ecs2.1717.
  • Castro, M. S., and C. T. Driscoll. 2002. Atmospheric nitrogen deposition to estuaries in the mid-Atlantic and Northeastern United States. Environ. Sci. Technol. 36 (8):3242–49. doi:10.1021/es010664o.
  • Castro, M. S., C. T. Driscoll, T. E. Jordan, W. G. Reay, and W. R. Boynton. 2003. Sources of nitrogen to estuaries in the United States. Estuaries. 26 (3):803–14. doi:10.1007/BF02711991.
  • Chaffin, J. D., T. W. Davis, D. J. Smith, M. M. Baer, and G. J. Dick. 2018. Interactions between nitrogen form, loading rate, and light intensity on microcystis and planktothrix growth and microcystin production. Harmful. Algae. 73:84–97. doi:10.1016/j.hal.2018.02.001.
  • Chapin, F. S., P. M. Vitousek, and K. Van Cleve. 1986. The nature of nutrient limitation in plant communities. Am. Nat. 127 (1):48–58. doi:10.1086/284466.
  • Chen, X., D. Day, B. Schichtel, W. Malm, A. K. Matzoll, J. Mojica, C. E. McDade, E. D. Hardison, D. L. Hardison, S. Walters, et al. 2014. Seasonal ambient ammonia and ammonium concentrations in a pilot IMPROVE NHx monitoring network in the western United States. Atmos. Environ. 91:118–26. doi:10.1016/j.atmosenv.2014.03.058.
  • Chen, Y., H. Shen, J. Kaiser, Y. Hu, S. L. Capps, S. Zhao, A. Hakami, J. S. Shih, G. K. Pavur, M. D. Turner, et al. 2021. High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model. Atmos. Chem. Phys. 21 (3):2067–82. doi:10.5194/acp-21-2067-2021.
  • Chen, Y., H. Shen, and A. G. Russell. 2019. Current and future responses of aerosol pH and composition in the U.S. to declining SO2 emissions and increasing NH3 emissions. Environ. Sci. Technol. 53 (16):9646–55. doi:10.1021/acs.est.9b02005.
  • Chen, Z.-L., W. Song, C.-C. Hu, X.-J. Liu, G.-Y. Chen, W. W. Walters, G. Michalski, C.-Q. Liu, D. Fowler, and X.-Y. Liu. 2022. Significant contributions of combustion-related sources to ammonia emissions. Nat. Commun. 13 (1):7710. doi:10.1038/s41467-022-35381-4.
  • Chen, T., P. Zhang, B. Chu, Q. Ma, Y. Ge, and H. He. 2023. Synergistic effects of so 2 and NH 3 coexistence on SOA formation from gasoline evaporative emissions. Environ. Sci. Technol. 57 (16):6616–25. doi:10.1021/acs.est.3c01921.
  • Clappier, A., C. A. Belis, D. Pernigotti, and P. Thunis. 2017. Source apportionment and sensitivity analysis: Two methodologies with two different purposes. Geosci. Model Dev. 10 (11):4245–56. doi:10.5194/gmd-10-4245-2017.
  • Clarisse, L., M. Van Damme, D. Hurtmans, B. Franco, C. Clerbaux, and P.-F. O. Coheur. 2021. The diel cycle of NH3 observed from the FY-4A Geostationary Interferometric Infrared Sounder (GIIRS). Geophys. Res. Lett. 48 (14):e2021GL093010. doi:10.1029/2021GL093010.
  • Clark, C. M., M. D. Bell, J. W. Boyd, J. E. Compton, E. A. Davidson, C. Davis, M. E. Fenn, L. Geiser, L. Jones, and T. F. Blett. 2017. Nitrogen-induced terrestrial eutrophication: Cascading effects and impacts on ecosystem services. Ecosphere. 8 (7):e01877. doi:10.1002/ecs2.1877.
  • Clark, C. M., J. Phelan, J. Ash, J. Buckley, J. Cajka, K. Horn, R. Q. Thomas, and R. D. Sabo. 2023. Future climate change effects on US forest composition may offset benefits of reduced atmospheric deposition of N and S. Global Change Biol. 29 (17):4793–810. doi:10.1111/gcb.16817.
  • Clark, C. M., S. M. Simkin, E. B. Allen, W. D. Bowman, J. Belnap, M. L. Brooks, S. L. Collins, L. H. Geiser, F. S. Gilliam, S. E. Jovan, et al. 2019. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nat. Plants. 5 (7):697–705. doi:10.1038/s41477-019-0442-8.
  • Clark, C. M., R. Q. Thomas, and K. J. Horn. 2022. Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened. Commun. Earth Environ. 4 (1):35. doi:10.1038/s43247-023-00677-w.
  • Colorado Department of Public Health and Environment and U.S. EPA (CDPHE). 2007. Rocky Mountain National Park nitrogen deposition reduction plan. https://cdphe.colorado.gov/public-information/planning-and-outreach/rocky-mountain-national-park-initiative;.
  • Colorado Department of Public Health and Environment (CDPHE) and U.S. EPA. 2005. Memorandum of understanding for interagency collaboration to address air quality issues affecting Rocky Mountain National Park. https://cdphe.colorado.gov/public-information/planning-and-outreach/rocky-mountain-national-park-initiative.
  • Conley, D. J., H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot, and G. E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science 323 (5917):1014–15. doi:10.1126/science.1167755.
  • Cooter, E. J., J. O. Bash, V. Benson, and L. Ran. 2012. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments. Biogeosciences. 9 (10):4023–35. doi:10.5194/bg-9-4023-2012.
  • Cooter, E. J., J. O. Bash, J. T. Walker, M. R. Jones, and W. Robarge. 2010. Estimation of NH3 bi-directional flux from managed agricultural soils. Atmos. Environ. 44 (17):2107–15. doi:10.1016/j.atmosenv.2010.02.044.
  • Copeland, C. 2014. Air quality issues and animal agriculture: A primer (RL32948). C. R. Service. EveryCRSReport.com.
  • Coughlin, J. G., S. Y. Chang, J. Huang, K. Craig, C. T. Driscoll, C. Scarborough, C. M. Clark, and N. R. Pavlovic. 2024. Spatially varying nitrogen critical loads for tree species driven by mediating factor influences. Ecosphere. (In press).
  • Coughlin, J. G., C. M. Clark, L. H. Pardo, R. D. Sabo, and J. D. Ash. 2023. Sensitive tree species remain at risk despite improved air quality benefits to US forests. Nat. Sustain. 6 (12):1607–19. doi:10.1038/s41893-023-01203-8.
  • Cox, R. D., K. L. Preston, R. F. Johnson, R. A. Minnich, and E. B. Allen. 2014. Influence of landscape-scale variables on vegetation conversion to exotic annual grassland in southern California, USA. Global Ecol. Conserv. 2:190–203. doi:10.1016/j.gecco.2014.09.008.
  • Crippa, M., D. Guizzardi, M. Muntean, E. Schaaf, F. Dentener, J. A. van Aardenne, S. Monni, U. Doering, J.G.J. Olivier, V. Pagliari, et al. 2018. Gridded emissions of air pollutants for the period 1970ΓÇô2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10 (4):1987–2013. doi:10.5194/essd-10-1987-2018.
  • Dammers, E., C. A. McLinden, D. Griffin, M. W. Shephard, S. Van Der Graaf, E. Lutsch, M. Schaap, Y. Gainairu-Matz, V. Fioletov, M. Van Damme, et al. 2019. NH3 emissions from large point sources derived from CrIS and IASI satellite observations. Atmos. Chem. Phys. 19 (19):12261–93. doi:10.5194/acp-19-12261-2019.
  • Davis, T. W., G. S. Bullerjahn, T. Tuttle, R. M. McKay, and S. B. Watson. 2015. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Environ. Sci. Technol. 49 (12):7197–207. doi:10.1021/acs.est.5b00799.
  • Dedoussi, I. C., and S. H. Barrett. 2014. Air pollution and early deaths in the United States. Part II: Attribution of PM2.5 exposure to emissions species, time, location and sector. Atmos. Environ. 99:610–17. doi:10.1016/j.atmosenv.2014.10.033.
  • Dedoussi, I. C., S. D. Eastham, E. Monier, and S. R. H. Barrett. 2020. Premature mortality related to United States cross-state air pollution. Nature. 578 (7794):261–65. doi:10.1038/s41586-020-1983-8.
  • Delwiche, C. C. 1970. The nitrogen cycle. Biosphere Sci. Am. 223 (3):136. doi:10.1038/scientificamerican0970-136.
  • Dennis, R. L., R. Mathur, J. E. Pleim, and J. T. Walker. 2010. Fate of ammonia emissions at the local to regional scale as simulated by the community multiscale air quality model. Atmos. Pollut. Res. 1 (4):207–14. doi:10.5094/APR.2010.027.
  • Dentener, F., J. Drevet, I. Bey, B. Eickhout, A.M. Fiore, D. Hauglustaine, L.W. Horowitz, M. Krol, U.C. Kulshrestha, M. Lawrence, et al. 2006. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem Cycles 20 (4).
  • de Vries, W., S. Solberg, M. Dobbertin, H. Sterba, D. Laubhahn, G. J. Reinds, G.-J. Nabuurs, P. Gundersen, and M. A. Sutton. 2008. Ecologically implausible carbon response? Nature 451 (7180):E1–3. doi:10.1038/nature06579.
  • Dolman, A. M., J. Rücker, F. R. Pick, J. Fastner, T. Rohrlack, U. Mischke, C. Wiedner, and S. Bertilsson. 2012. Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLOS One. 7 (6):38757. doi:10.1371/journal.pone.0038757.
  • Driscoll, C. T., K.M. Driscoll, H. Fakhraei, and K. Civerolo. 2016. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition. Atmos. Environ. 146:5–14. doi:10.1016/j.atmosenv.2016.08.034.
  • Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. Likens, J. L. Stoddard, and K. C. Weathers. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies. BioScience 51: 180–198.
  • Driscoll, C. T., D. Whitall, J. Aber, E. Boyer, M. Castro, C. Cronan, C. L. Goodale, P. Groffman, C. Hopkinson, K. Lambert, et al. 2003. Nitrogen pollution in the northeastern United States: Sources, effects, and management options. Bioscience. 53 (4):357–74. doi:10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2.
  • Duyzer, J. 1994. Dry deposition of ammonia and ammonium aerosols over heathland. J. Geophys. Res. 99 (D9):18757–63. doi:10.1029/94JD01210.
  • Eatough Jones, M., T. Paine, M. Fenn, and M. Poth. 2004. Influence of ozone and nitrogen deposition on bark beetle activity under drought conditions. For. Ecol. Manag. 200 (1–3):67–76. doi:10.1016/j.foreco.2004.06.003.
  • Ellis, R. A., D. J. Jacob, M.P. Sulprizio, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E. Porter, L. H. Pardo, and J. A. Lynch. 2013. Present and future nitrogen deposition to national parks in the United States: Critical load exceedances. Atmos. Chem. Phys. 13 (17):9083–95. doi:10.5194/acp-13-9083-2013.
  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Bgai, E. W. Seabloom, J. B. Shurin, and J. E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10 (12):1135–42. doi:10.1111/j.1461-0248.2007.01113.x.
  • Environmental Integrity Project (EIP). 2011. Petition for the regulation of ammonia as a criteria pollutant under clean air act sections 108 and 109. https://www.centerforfoodsafety.org/files/petitionammonia-as-criteria-pollutant04062011_59802.pdf.
  • EPA, U. S. 2024. Final reconsideration of the National Ambient Air Quality Standards for Particulate Matter (PM). Accessed February 2024. https://www.epa.gov/pm-pollution/final-reconsideration-national-ambient-air-quality-standards-particulate-matter-pm.
  • Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter. 2008. How a century of ammonia synthesis changed the world. Nat Geosci 1 (10):636–39. doi:10.1038/ngeo325.
  • Erisman, J. W., A. W. M. Vermetten, E. F. Pinksterboer, W. A. H. Asman, A. Waijers-Ypelaan, and J. Slanina. 1987. Atmospheric ammonia: Distribution, equilibrium with aerosols and conversion rate to ammonium. In: Ammonia and Acidification, in: WAH, A. HSMA, D. (Eds.), Proceedings of the symposium of the European Association for the Science of Air Pollution Ammonia and Acidification. Symp. EURASAP, Bilthoven, The Netherlands, pp. 59–72.
  • European Commission. 2011. Commission regulation implementing and amending regulation (EC) No. 595/2009 of the European Parliament and of the Council with respect to emissions from heavy duty vehicles (Euro VI) and amending Annexes I and III to Directive 2007/46/EC of the European Parliament and of the Council. Commission Regulation (EU) No. 582/2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R0582.
  • European Commission. 2019. The European Green Deal. (COM(2019) 640 final). https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF.
  • European Commission. 2021. EU action plan: Towards zero pollution for air, water, and soil. (COM(2021) 400). https://environment.ec.europa.eu/strategy/zero-pollution-action-plan_en#documents.
  • European Commission. 2022a. Euro 7 vehicle emission standards. A European green deal proposal: Technical studies for the development of Euro 7: Testing, pollutants and emission limits. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495.
  • European Commission. 2022b. Proposal for a directive of the European Parliament and of the council amending directive 2010/75/EU of the European Parliament and off the council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) and Council directive 1993/31/EC of 26 April 1999 on the landfill of waste. (COM(2022) 156 final/3).
  • European Commission. 2022c. Proposal for a Regulation of the European Parliament and of the Council on type-approval of motor vehicles and. engines and of. systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7) and repealing Regulations (EC) No 715/2007 and (EC) No 595/2009. (COM(2022) 586 final), Brussels, Belgium.
  • European Commission. 2023. EU air quality standards https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en.
  • European Environment Agency (EEA). 2023. Air pollution in Europe: 2023 reporting status under the national emission reduction commitments directive https://www.eea.europa.eu/publications/national-emission-reduction-commitments-directive-2023.
  • European Parliament. 2010. Directive on industrial emissions (integrated pollution prevention and control (Directive 2010/75EU). Brussels, Belgium. https://environment.ec.europa.eu/topics/industrial-emissions-and-safety/industrial-emissions-directive_en.
  • European Parliament. 2016. Directive on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. (Directive (EU) 2016/2284). Brussels, Belgium. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L2284.
  • European Parliament. 2023a. Air pollution: MEPs want stricter limits to achieve zero pollution by 2050. https://www.europarl.europa.eu/news/en/press-room/20230911IPR04915/air-pollution-meps-want-stricter-limits-to-achieve-zero-pollution-by-2050.
  • European Parliament. 2023b. Amendments adopted by the European Parliament on 13 September 2023 on the proposal for a directive of the European Parliament and of the Council on ambient air quality and cleaner air for Europe (recast) (COM(2022)0542 - C9-0364/2022-2022/0347(COD)). Brussels, Belgium. https://www.europarl.europa.eu/doceo/document/TA-9-2023-0318_EN.html.
  • Evangeliou, N., Y. Balkanski, S. Eckhardt, A. Cozic, M. Van Damme, P. F. Coheur, L. Clarisse, M. W. Shephard, K. E. Cady-Pereira, and D. Hauglustaine. 2021. 10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models. Atmos. Chem. Phys. 21 (6):4431–51. doi:10.5194/acp-21-4431-2021.
  • Fenn, M. E., J. S. Baron, E. B. Allen, H. M. Rueth, K. R. Nydick, L. Geiser, W. D. Bowman, J. O. Sickman, T. Meixner, D. W. Johnson, et al. 2003. Ecological effects of nitrogen deposition in the western United States. Bioscience. 53 (4):404–20. doi:10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2.
  • Fenn, M. E., A. Bytnerowicz, S. L. Schilling, D. M. Vallano, E. S. Zavaleta, S. B. Weiss, C. Morozumi, L. H. Geiser, and K. Hanks. 2018. On-road emissions of ammonia: An underappreciated source of atmospheric nitrogen deposition. Sci. Total Environ 625:909–19. doi:10.1016/j.scitotenv.2017.12.313.
  • Ford, B., M. Val Martin, S. E. Zelasky, E. V. Fischer, S. C. Anenberg, C.L. Heald, and J.R. Pierce. 2018. Future fire impacts on smoke concentrations, visibility, and health in the contiguous United States. GeoHealth. 2 (8):229–47. doi:10.1029/2018GH000144.
  • Fowler, D., M. Coyle, U. Skiba, M. A. Sutton, J. N. Cape, S. Reis, L. J. Sheppard, A. Jenkins, B. Grizzetti, J.N. Galloway, et al. 2013. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368 (1621):20130164. doi:10.1098/rstb.2013.0164.
  • Galloway, J. N. 1998. The global nitrogen cycle: Changes and consequences. Environ. Pollut. 102 (1, Supplement 1):15–24. doi:10.1016/S0269-7491(98)80010-9.
  • Galloway, J. N., J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth, E. B. Cowling, and B. J. Cosby. 2003. The nitrogen cascade. Bioscience. 53 (4):341–56. doi:10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2.
  • Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, et al. 2004. Nitrogen cycles: Past, present, and future. Biogeochemistry. 70 (2):153–226. doi:10.1007/s10533-004-0370-0.
  • Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M.A. Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 320 (5878):889–92. doi:10.1126/science.1136674.
  • Gebhart, K. A., B. A. Schichtel, W. C. Malm, M. G. Barna, M. A. Rodriguez, and J. L. Collett. 2011. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA. Atmos. Environ. 45 (3):621–33. doi:10.1016/j.atmosenv.2010.10.035.
  • Geddes, J. A., and R. V. Martin. 2017. Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns. Atmos. Chem. Phys. 17 (16):10071–91. doi:10.5194/acp-17-10071-2017.
  • Geiser, L. H., P. R. Nelson, S.E. Jovan, H. T. Root, and C. M. Clark. 2019. Assessing ecological risks from atmospheric deposition of nitrogen and sulfur to US Forests using epiphytic macrolichens diversity. Diversity. 11 (6):87. doi:10.3390/d11060087.
  • Geiser, L. H., H. Root, R. J. Smith, S. E. Jovan, L. St Clair, and K. L. Dillman. 2021. Lichen-based critical loads for deposition of nitrogen and sulfur in US forests. Environ. Pollut. 291:118187. doi:10.1016/j.envpol.2021.118187.
  • Ge, Y., M. Vieno, D. S. Stevenson, P. Wind, and M. R. Heal. 2023. Global sensitivities of reactive N and S gas and particle concentrations and deposition to precursor emissions reductions. Atmos. Chem. Phys. 23 (11):6083–112. doi:10.5194/acp-23-6083-2023.
  • Ge, X., A. S. Wexler, and S. L. Clegg. 2011. Atmospheric amines – part I. A review. Atmos. Environ. 45 (3):524–46. doi:10.1016/j.atmosenv.2010.10.012.
  • Gilliam, F. S., D. A. Burns, C.T. Driscoll, S. D. Frey, G. M. Lovett, and S. A. Watmough. 2019. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Environ. Pollut. 244:560–74. doi:10.1016/j.envpol.2018.09.135.
  • Gilliam, F. S., D. A. Burns, C. T. Driscoll, S. D. Frey, G. M. Lovett, and S. A. Watmough. 2023. Responses of forest ecosystems to decreasing nitrogen deposition in eastern North America. In Atmospheric nitrogen deposition to global forests, ed. E. Du and W.D. Vries, 205–25. London, UK: Academic Press.
  • Gilliam, F. S., N. T. Welch, A. H. Phillips, J. H. Billmyer, W. T. Peterjohn, Z. K. Fowler, C. A. Walter, M. B. Burnham, J. D. May, M. B. Adams, et al. 2016. Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere 7 (4):e01250. doi:10.1002/ecs2.1250.
  • Gilliland, A. B., K. W. Appela, R. W. Pinder, and R. L. Dennis. 2006. Seasonal NH3 emissions for the continental United States: Inverse model estimation and evaluation. Atmos. Environ. 40 (26):4986–98. doi:10.1016/j.atmosenv.2005.12.066.
  • Gilliland, A. B., R. L. Dennis, S. J. Roselle, and T. E. Pierce. 2003. Seasonal NH3 emission estimates for the eastern United States based on ammonium wet concentrations and an inverse modeling method. J. Geophys. Res. 108 (D15). doi:10.1029/2002JD003063.
  • Gobler, C. J., J. A. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow, and D.B. deWaal. 2016. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful. Algae. 54:87–97. doi:10.1016/j.hal.2016.01.010.
  • Goodale, C. L., J. D. Aber, and W. H. McDowell. 2000. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems (N. Y. Print). 3 (5):433–50. doi:10.1007/s100210000039.
  • Goodkind, A., C. W. Tessum, J. S. Coggins, J. D. Hill, and J. D. Marshall. 2019. Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions. Proc. Natl. Acad. Sci. USA. 116 (18):8775–80. doi:10.1073/pnas.1816102116.
  • Gordon, H., K. Sengupta, A. Rap, J. Duplissy, C. Frege, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, et al. 2016. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proc. Natl. Acad. Sci. USA. 113 (43):12053–58. doi:10.1073/pnas.1602360113.
  • Greaver, T. L., T. J. Sullivan, J. D. Herrick, M. C. Barber, J. S. Baron, B. J. Cosby, M. E. Deerhake, R. L. Dennis, J. J. Dubois, C. L. Goodale, et al. 2012. Ecological effects of nitrogen and sulfur air pollution in the US: What do we know? Front Ecol. Environ. 10 (7):365–72. doi:10.1890/110049.
  • Groffman, P. M., C. T. Driscoll, J. Duran, J. L. Campbell, L. M. Christenson, T.J. Fahey, M. C. Fisk, C. Fuss, G. E. Likens, G. Lovett, et al. 2018. Nitrogen oligiotrophication in northern hardwood forests. Biogeochemistry 141 (3):523–39. doi:10.1007/s10533-018-0445-y.
  • Grulke, N. E., R. A. Minnich, T. D. Paine, S. J. Seybold, D. J. Chave, M. E. Fenn, P.J. Riggan, and A. Dunn. 2010. Plasticity in physiological traits in conifers: Implications for response to climate change in the western U.S. Environ. Pollut. 158 (6):2032–42. doi:10.1016/j.envpol.2009.12.010.
  • Guo, H., R. Otjes, P. Schlag, A. Kiendler-Scharr, A. Nenes, and R. J. Weber. 2018. Effectiveness of ammonia reduction on control of fine particle nitrate. Atmos. Chem. Phys. 18 (16):12241–56. doi:10.5194/acp-18-12241-2018.
  • Hand, J. L., A. J. Prenni, S. Copeland, B. A. Schichtel, and W.C. Malm. 2020. Thirty years of the Clean Air Act Amendments: Impacts on haze in remote regions of the United States (1990 - 2018). Atmos. Environ. 243:117865. doi:10.1016/j.atmosenv.2020.117865.
  • Hautier, Y., P. A. Niklaus, and A. Hector. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324 (5927):636–38. doi:10.1126/science.1169640.
  • Heald, C. L., J. L. Collett Jr, T. Lee, K. B. Benedict, F. M. Schwandner, Y. Li, L. Clarisse, D. R. Hurtmans, M. Van Damme, C. Clerbaux, et al. 2012. Atmospheric ammonia and particulate inorganic nitrogen over the United States. Atmos. Chem. Phys. 12 (21):10295–312. doi:10.5194/acp-12-10295-2012.
  • Henault, C., H. Bourennane, A. Ayzac, C. Ratie, N. P. A. Saby, J.-P. Cohan, T. Eglin, and C. Le Gall. 2019. Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Sci. Rep. 9 (1):20182. doi:10.1038/s41598-019-56694-3.
  • Henze, D. K., J. H. Seinfeld, and D. T. Shindell. 2009. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys. 9 (16):5877–903. doi:10.5194/acp-9-5877-2009.
  • Hoffman, D. K., M. J. McCarthy, A. R. Boedecker, J. A. Myers, and S. A. Newell. 2022. The role of internal nitrogen loading in supporting non-N-fixing harmful cyanobacterial blooms in the water column of a large eutrophic lake. Limnol. Oceanogr. 67 (9):2028–41. doi:10.1002/lno.12185.
  • Högberg, P., R. W. Lucas, M. N. Högberg, U. Skyllberg, G. Egnell, J. Larson, and D. Binkley. 2024. What happens to trees and soils during five decades of experimental nitrogen loading? For. Ecol. Manage. 553:121644. doi:10.1016/j.foreco.2023.121644.
  • Hopke, P. K., and X. Querol. 2022. Is improved vehicular NOx control leading to increased urban NH3 emissions? Environ. Sci. Technol. 56 (17):11926–27. doi:10.1021/acs.est.2c04996.
  • Horne, J. R., S. Zhu, J. Montoya-Aguilera, M. L. Hinks, L.M. Wingen, S. A. Nizkorodov, and D. Dabdub. 2018. Reactive uptake of ammonia by secondary organic aerosols: Implications for air quality. Atmos. Environ. 189:1–8. doi:10.1016/j.atmosenv.2018.06.021.
  • Horn, K. J., R. Q. Thomas, C. M. Clark, L. H. Pardo, M. E. Fenn, G. B. Lawrence, S. S. Perakis, E. A. H. Smithwick, D. Baldwin, S. Braun, et al. 2018. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PloS One. 13 (10):e0205296. doi:10.1371/journal.pone.0205296.
  • Houlton, B. Z., M. Almaraz, V. Aneja, A. T. Austin, E. Bai, K. G. Cassman, J. E. Compton, E. A. Davidson, J. W. Erisman, J. N. Galloway, et al. 2019. A world of cobenefits: Solving the global nitrogen challenge. Earth’s. Future. 7 (8):865–72. doi:10.1029/2019EF001222.
  • Howarth, R. W. 1988. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. Syst. 19 (1):89–110. doi:10.1146/annurev.es.19.110188.000513.
  • Howarth, R. W. 2022. Nitrogen. In Encyclopedia of inland waters, ed. T. Mehner and K. Trockner, 2nd ed. p. 155–162. Amsterdam, Netherlands: Elsevier.
  • Howarth, R. W., G. Billen, D. Swaney, A. Townsend, N. Jarworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, et al. 1996. Riverine inputs of nitrogen to the North Atlantic Ocean: Fluxes and human influences. Biogeochemistry 35 (1):75–139. doi:10.1007/BF02179825.
  • Howarth, R. W., F. Chan, D. P. Swaney, R. M. Marino, and M. Hayn. 2021. Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity. Biogeochemistry. 154 (2):293–306. doi:10.1007/s10533-021-00765-z.
  • Howarth, R. W., and R. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over 3 decades. Limnol. Oceanogr. 51 (1part2):364–76. doi:10.4319/lo.2006.51.1_part_2.0364.
  • Howarth, R., and H. W. Paerl. 2008. Coastal marine eutrophication: Control of both nitrogen and phosphorus is necessary. Proc. Natl. Acad. Sci 105 (49):E103. doi:10.1073/pnas.0807266106.
  • Inatomi, M., T. Hajima, A. Ito, and J. Shen. 2019. Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model. PLOS One. 14 (7):e0219159. doi:10.1371/journal.pone.0219159.
  • Janssens, I. A., W. Dieleman, S. Luyssaert, J. A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A. J. Dolman, J. Grace, G. Matteucci, et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3 (5):315–22. doi:10.1038/ngeo844.
  • Janssens, I. A., and S. Luyssaert. 2009. Nitrogen’s carbon bonus. Nat. Geosci. 2 (5):318–19. doi:10.1038/ngeo505.
  • Jaworski, N. A., R. W. Howarth, and L. J. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. Environ. Sci. Technol. 31 (7):1995–2004. doi:10.1021/es960803f.
  • Jickells, T., A. R. Baker, J. N. Cape, S. E. Cornell, and E. Nemitz. 2013. The cycling of organic nitrogen through the atmosphere. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368 (1621):20130115. doi:10.1098/rstb.2013.0115.
  • Jo, I., S. Fei, C. M. Oswalt, G. M. Domke, and R. P. Phillips. 2019. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5 (4):eaav6358. doi:10.1126/sciadv.aav6358.
  • Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T.J. Brown, G. J. Williamson, and D. M. J. S. Bowman. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6 (1):7537. doi:10.1038/ncomms8537.
  • Jones, J. A., I. F. Creed, K. L. Hatcher, R. J. Warren, M. B. Adams, M. H. Benson, E. Boose, W. A. Brown, J. L. Campbell, A. Covich, et al. 2012. Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Bioscience. 62 (4):390–404. doi:10.1525/bio.2012.62.4.10.
  • Karra, K., C. Kontgis, Z. Statman-Weil, J. C. Mazzariello, M. Mathis, and S.P. Brumby. 2021. Global land use/land cover with Sentinel 2 and deep learning, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 4704–707.
  • Kean, A. J., D. Littlejohn, G. A. Ban-Weiss, R.A. Harley, T. W. Kirchstetter, and M. M. Lunden. 2009. Trends in on-road vehicle emissions of ammonia. Atmos. Environ. 43 (8):1565–70. doi:10.1016/j.atmosenv.2008.09.085.
  • Kelly, J. M., E. A. Marais, G. Lu, J. Obszynska, M. Mace, J. White, and R. J. Leigh. 2023. Diagnosing domestic and transboundary sources of fine particulate matter (PM2.5) in UK cities using GEOS-Chem. City. Environ. Interact. 18:100100. doi:10.1016/j.cacint.2023.100100.
  • Kirkby, J., J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476 (7361):429–33. doi:10.1038/nature10343.
  • Kong, L., X. Tang, J. Zhu, Z. Wang, Y. Pan, H. Wu, L. Wu, Q. Wu, Y. He, S. Tian, et al. 2019. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble kalman filter. Environ. Sci. Technol. 53 (21):12529–38. doi:10.1021/acs.est.9b02701.
  • Kruit, R. J., M. Schaap, F.J. Sauter, M. C. van Zanten, and W. A. J. van Pul. 2012. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange. Biogeosciences. 9 (12):5261–77. doi:10.5194/bg-9-5261-2012.
  • Kulmala, M., L. Pirjola, and J. M. Makela. 2000. Stable sulphate clusters as a source of new atmospheric particles. Nature 404 (6773):66–69. doi:10.1038/35003550.
  • LaCount, M. D., R.A. Haeuber, T.R. Macy, and B.A. Murray. 2021. Reducing power sector emissions under the 1990 clean air act amendments: A retrospective on 30 years of program development and implementation. Atmos. Environ. 245:118012. doi:10.1016/j.atmosenv.2020.118012.
  • Lamarque, J.F., T.C. Bond, V. Eyring, C. Granier, A. Heil, Z. Klimont, D. Lee, C. Liousse, A. Mieville, B. Owen, et al. 2010. Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 10 (15):7017–39. doi:10.5194/acp-10-7017-2010.
  • Lamarque, J. F., F. Dentener, J. McConnell, C. U. Ro, M. Shaw, R. Vet, D. Bergmann, P. Cameron-Smith, S. Dalsoren, R. Doherty, et al. 2013. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of historical and projected future changes. Atmos. Chem. Phys. 13 (16):7997–8018. doi:10.5194/acp-13-7997-2013.
  • Lamsal, L. N., R. V. Martin, A. Padmanabhan, A. van Donkelaar, Q. Zhang, C.E. Sioris, K. Chance, T. P. Kurosu, and M. J. Newchurch. 2011. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys. Res. Lett. 38 (5). doi:10.1029/2010GL046476.
  • Laskin, A., J. Laskin, and S. A. Nizkorodov. 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115 (10):4335–82. doi:10.1021/cr5006167.
  • Lassiter, M. G., J. Lin, J. E. Compton, J. Phelan, R. D. Sabo, J. L. Stoddard, S. R. McDow, and T. L. Greaver. 2023. Shifts in the composition of nitrogen deposition in the conterminous United States are discernable in stream chemistry. Sci. Total Environ 881:163409. doi:10.1016/j.scitotenv.2023.163409.
  • Laughner, J. L., J. L. Neu, D. Schimel, P. O. Wennberg, K. Barsanti, K. W. Bowman, A. Chatterjee, B. E. Croes, H. L. Fitzmaurice, D. K. Henze, et al. 2021. Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proc. Natl. Acad. Sci. USA. 118 (46):e2109481118. doi:10.1073/pnas.2109481118.
  • Lawal, A. S., X. Guan, C. Liu, L. R. F. Henneman, P. Vasilakos, V. Bhogineni, R.J. Weber, A. Nenes, and A.G. Russell. 2018. Linked response of aerosol acidity and ammonia to SO2 and NOx emissions reductions in the United States. Environ. Sci. Technol. 52 (17):9861–73. doi:10.1021/acs.est.8b00711.
  • LeBauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89 (2):371–79. doi:10.1890/06-2057.1.
  • Lebo, M. E., H. W. Paerl, and B. L. Peierls. 2012. Evaluation of progress in achieving TMDL mandated nitrogen reductions in the Neuse River Basin, North Carolina. Environ. Manage. 49 (1):253–66. doi:10.1007/s00267-011-9774-5.
  • Lee, H. M., F. Paulot, D. K. Henze, K. Travis, D. J. Jacob, L. H. Pardo, and B.A. Schichtel. 2016. Sources of nitrogen deposition in federal class I areas in the US. Atmos. Chem. Phys. 16 (2):525–40. doi:10.5194/acp-16-525-2016.
  • Lewis Brandon, M., H. Battye William, P. Aneja Viney, H. Kim, and L. Bell Michelle. 2023. Modeling and analysis of air pollution and environmental justice: The case for North Carolina’s hog concentrated animal feeding operations. Environ. Health Perspect. 131 (8):087018. doi:10.1289/EHP11344.
  • Lewis, W. M., W. A. Wurtsbaugh, and H. W. Paerl. 2011. Rationale for control of anthropogenic nitrogen and phosphorus in inland waters. Environ. Sci. Technol. 45 (24):10300–05. doi:10.1021/es202401p.
  • Li, Y. 2015. Characterizing ammonia concentrations and deposition in the United States, Department of Atmospheric Sciences. Colorado State University.
  • Li, Y. J., P. Liu, Z. Gong, Y. Wang, A. P. Bateman, C. Bergoend, A. K. Bertram, and S.T. Martin. 2015. Chemical reactivity and liquid/nonliquid states of secondary organic material. Environ. Sci. Technol. 49 (22):13264–74. doi:10.1021/acs.est.5b03392.
  • Li, C., R. V. Martin, M. W. Shephard, K. Cady-Pereira, M. J. Cooper, J. Kaiser, C.J. Lee, L. Zhang, and D. K. Henze. 2019. Assessing the iterative finite difference mass balance and 4D-var methods to derive ammonia emissions over North America using synthetic observations. J. Geophys. Res. 124 (7):4222–36. doi:10.1029/2018JD030183.
  • Li, Y., B. A. Schichtel, J. T. Walker, D. B. Schwede, X. Chen, C. M. Lehmann, M. A. Puchalski, D. A. Gay, and J. L. Collett Jr. 2016. Increasing importance of deposition of reduced nitrogen in the United States. Proc. Natl. Acad. Sci. USA. 113 (21):5874–79. doi:10.1073/pnas.1525736113.
  • Li, Y., T.M. Thompson, M. Van Damme, X. Chen, K.B. Benedict, Y. Shao, D. Day, A. Boris, A. P. Sullivan, J. Ham, et al. 2017. Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmos. Chem. Phys. 17 (10):6197–213. doi:10.5194/acp-17-6197-2017.
  • Liu, P., J. Ding, L. Liu, W. Xu, and X. Liu. 2022. Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting infrared atmospheric sounding interferometer and the FY-4A geostationary interferometric infrared Sounder. Atmos. Chem. Phys. 22 (13):9099–110. doi:10.5194/acp-22-9099-2022.
  • Liu, M., X. Huang, Y. Song, J. Tang, J. Cao, X. Zhang, Q. Zhang, S. Wang, T. Xu, L. Kang, et al. 2019. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA. 116 (16):7760–65. doi:10.1073/pnas.1814880116.
  • Liu, Y., J. Liggio, R. Staebler, and S. M. Li. 2015. Reactive uptake of ammonia to secondary organic aerosols: Kinetics of organonitrogen formation. Atmos. Chem. Phys. 15 (23):13569–84. doi:10.5194/acp-15-13569-2015.
  • Liu, P., Y. J. Li, Y. Wang, A. P. Bateman, Y. Zhang, Z. Gong, A. K. Bertram, and S.T. Martin. 2018. Highly viscous states affect the browning of atmospheric organic particulate matter. ACS. Cent. Sci. 4 (2):207–15. doi:10.1021/acscentsci.7b00452.
  • Li, C., A. van Donkelaar, M. S. Hammer, E. E. McDuffie, R. T. Burnett, J. V. Spadaro, D. Chatterjee, A. J. Cohen, J. S. Apte, V. A. Southerland, et al. 2023. Reversal of trends in global fine particulate matter air pollution. Nat. Commun. 14:5349. doi:10.1038/s41467-023-41086-z.
  • Lovett, G. M., and C. L. Goodale. 2011. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems (N. Y. Print) 14 (4):615–31. doi:10.1007/s10021-011-9432-z.
  • Lu, Z., X. Liu, R. A. Zaveri, R. C. Easter, S. Tilmes, L. K. Emmons, F. Vitt, B. Singh, H. Wang, R. Zhang, et al. 2021. Radiative forcing of nitrate aerosols from 1975 to 2010 as simulated by MOSAIC module in CESM2-MAM4. J. Geophys. Res. 126 (17):e2021JD034809. doi:10.1029/2021JD034809.
  • Luo, L., L. Ran, Q. Z. Rasool, and D. S. Cohan. 2022. Integrated modeling of U.S. agricultural soil emissions of reactive nitrogen and associated impacts on air pollution, health, and climate. Environ. Sci. Technol. 56 (13):9265–76. doi:10.1021/acs.est.1c08660.
  • Lupis, S., N. Embertson, and J. Davis. 2010. Best management practices for reducing ammonia emissions - 1.631. https://extension.colostate.edu/topic-areas/agriculture/best-management-practices-for-reducing-ammonia-emissions-1-631/.
  • Magnani, F., M. Mencuccini, M. Borghetti, P. Berbigier, F. Berninger, S. Delzon, A. Grelle, P. Hari, G. Jarvis, and P. Kolari, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447 (7146):849–51. doi:10.1038/nature05847.
  • Ma, Q., X. Lin, C. Yang, B. Long, Y. Gai, and W. Zhang. 2018. The influences of ammonia on aerosol formation in the ozonolysis of styrene: Roles of criegee intermediate reactions. R. Soc. Open Sci. 5 (5):172171. doi:10.1098/rsos.172171.
  • Malm, W. C. 2016. Visibility: The seeing of near and distant landscape features. 1st ed. Amsterdam, the Netherlands: Elsevier.
  • Malm, W. C., B. A. Schichtel, M. G. Barna, K. A. Gebhart, M. A. Rodriguez, J. L. Collett Jr, C. M. Carrico, K. B. Benedict, A. J. Prenni, and S. M. Kreidenweis. 2013. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park. J. Air Waste Manag. Assoc. 63 (11):1245–63. doi:10.1080/10962247.2013.804466.
  • Martin, S. T., H. M. Hung, R. J. Park, D. J. Jacob, R. J. D. Spurr, K. V. Chance, and M. Chin. 2004. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing. Atmos. Chem. Phys. 4 (1):183–214. doi:10.5194/acp-4-183-2004.
  • Masera, O. R., R. Bailis, R. Drigo, A. Ghilardi, and I. Ruiz-Mercado. 2015. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 40 (1):121–50. doi:10.1146/annurev-environ-102014-021318.
  • Mason, R. E., J. M. Craine, N. K. Lany, M. Jonard, S. V. Ollinger, P. M. Groffman, R. W. Fulweiler, J. Angerer, Q. D. Read, P. B. Reich, et al. 2022. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science. 376 (6590):eabh3767. doi:10.1126/science.abh3767.
  • McCarthy, M., and J. Cheatham. 2022. Rocky mountain national park air quality initiative: Air quality control commission annual briefing. Colorado Department of Public Health and Environment, U.S. National Park Service and U.S. Environmental Protection Agency, Denver, CO.
  • McDonnell, T. C., C. T. Driscoll, T. J. Sullivan, D. A. Burns, B. P. Baldigo, and S. Shao. 2021. Regional target loads of atmospheric nitrogen and sulfur deposition for the protection of stream and watershed soil resources of the Adirondack Mountains, USA. Environ. Pollut. 281:117110. doi:10.1016/j.envpol.2021.117110.
  • McDonnell, T. C., G. J. Reinds, G. W. W. Wamelink, P. W. Goedhart, M. Posch, T. J. Sullivan, and C. M. Clark. 2020. Threshold effects of air pollution and climate change on understory plant communities at forested sites in the eastern United States. Environ. Pollut. 262:114351. doi:10.1016/j.envpol.2020.114351.
  • McDuffie, E., R. Martin, H. Yin, and M. Brauer. 2020. Global burden of disease from major air pollution sources (GBD MAPS): A global approach. Boston, MA: Health Effects Institute.
  • Megaritis, A. G., C. Fountoukis, P. E. Charalampidis, C. Pilinis, and S. N. Pandis. 2013. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 13 (6):3423–43. doi:10.5194/acp-13-3423-2013.
  • Mendoza-Villafuerte, P., R. Suarez-Bertoa, B. Giechaskiel, F. Riccobono, C. Bulgheroni, C. Astorga, and A. Perujo. 2017. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Sci. Total Environ 609:546–55. doi:10.1016/j.scitotenv.2017.07.168.
  • Moldanova, J., P. Grennfelt, A. Jonsson, W. Aas, J. Munthe, A. Rabl, D. Simpson, and T. Spranger. 2011. Nitrogen as a threat to European air quality. In The European nitrogen assessment: Sources, effects and policy perspectives, ed. G. Billen, A. Bleeker, J. W. Erisman, P. Grennfelt, B. Grizzetti, C. M. Howard, M. A. Sutton, and H. van Grinsven, 405–33. Cambridge: Cambridge University Press.
  • Monchamp, M., F. R. Pick, B. E. Beisner, and R. Maranger. 2014. Nitrogen forms influence microcystin concentratoni and composition via changes in cyanobacterial community structure. PLOS ONE. 9 (1):85573. doi:10.1371/journal.pone.0085573.
  • Morris, K. 2024. 2020 data summary of wet nitrogen deposition at Rocky Mountain National Park. Science Report NPS/SR—2024/109, National Park Service, Fort Collins, Colorado. doi:10.36967/2303290.
  • Murray, C., A. Aravkin, P. Zheng, C. Abbafati, K. Abbas, M. Abbasi-Kangevari, F. Abd-Allah, A. Abdelalim, M. Abdollahi, I. Abdollahpour, et al. 2020. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 396 (10258):1223–49. doi:10.1016/S0140-6736(20)30752-2.
  • Mushinski, R. M., R. P. Phillips, Z. C. Payne, R. B. Abney, I. Jo, S. Fei, S. E. Pusede, J.R. White, D. B. Rusch, and J. D. Raff. 2019. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils. Proc. Natl. Acad. Sci. USA. 116 (6):2138–45. doi:10.1073/pnas.1814632116.
  • Myhre, G., D. Shindell, F. M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. F. Lamarque, D. Lee, B. Mendoza, et al., Eds. 2013. Anthropogenic and natural radiative forcing. Cambridge, UK: Cambridge University Press.
  • Nair, A. A., F. Yu, and G. Luo. 2023. The importance of ammonia for springtime atmospheric new particle formation and aerosol number abundance over the United States. Sci. Total Environ 863:160756. doi:10.1016/j.scitotenv.2022.160756.
  • Nanus, L., D. W. Clow, J. E. Saros, V. C. Stephens, and D. H. Campbell. 2012. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA. Environ. Pollut. 166:125–35. doi:10.1016/j.envpol.2012.03.019.
  • Nanus, L., J. A. McMurray, D. W. Clow, J.E. Saros, T. Blett, and J. J. Gurdak. 2017. Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area. Environ. Pollut. 223:644–56. doi:10.1016/j.envpol.2017.01.077.
  • Napelenok, S., D. Cohan, Y. Hu, and A. Russell. 2006. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmos. Environ. 40 (32):6112–21. doi:10.1016/j.atmosenv.2006.05.039.
  • Naseem, S., and A.J. King. 2018. Ammonia production in poultry houses can affect health of humans, birds, and the environment -techniques for its reduction during poultry production. Environ. Sci. Pollut. Res. 25 (16):15269–93. doi:10.1007/s11356-018-2018-y.
  • Na, K., C. Song, and D.R. Cocker. 2006. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 40 (10):1889–900. doi:10.1016/j.atmosenv.2005.10.063.
  • Na, K., C. Song, C. Switzer, and D. R. Cocker. 2007. Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ. Sci. Technol. 41 (17):6096–102. doi:10.1021/es061956y.
  • National Atmospheric Deposition Program (NADP). 2023. Total deposition maps. https://nadp.slh.wisc.edu/committees/tdep/.
  • National Research Council (NRC). 2000. Clean coastal waters: Understanding and reducing the effects of nutrient pollution. Washington, DC: National Academies Press.
  • National Research Council (NRC). 2008. Ammonia acute exposure guideline levels, acute exposure guideline levels for selected airborne chemicals. Committee on Acute Exposure Guideline Levels, National Academies Press, Washington, DC.
  • Natural Resource Conservation Service and U.S. Department of Agriculture. 2023b. Conservation practice standards. https://www.nrcs.usda.gov/resources/guides-and-instructions/conservation-practice-standards.
  • Natural Resource Conservation Service and U.S. Department of Agriculture. 2023c. National Air Quality Site Assessment Tool. https://naqsat.tamu.edu.
  • Natural Resource Conservation Service (NRCS) and U.S. Department of Agriculture. 2023a. National resource concern list and planning criteria. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=49285.wba.
  • Nawaz, M. O., D. K. Henze, S. C. Anenberg, C. Braun, J. Miller, and E. Pronk. 2023. A source apportionment and emission scenario assessment of PM2.5- and O3-related health impacts in G20 countries. GeoHealth 7 (e2022GH000713). doi:10.1029/2022GH000713.
  • Nenes, A., S. N. Pandis, M. Kanakidou, A. G. Russell, S. Song, P. Vasilakos, and R.J. Weber. 2021. Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmos. Chem. Phys. 21 (8):6023–33. doi:10.5194/acp-21-6023-2021.
  • Nenes, A., S. N. Pandis, R. J. Weber, and A. Russell. 2020. Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmos. Chem. Phys. 20 (5):3249–58. doi:10.5194/acp-20-3249-2020.
  • Nicole, W. 2013. Cafos and environmental justice: The case of North Carolina. Environ. Health Perspect. 121 (6):a182–89. doi:10.1289/ehp.121-a182.
  • Nilsson, J., and P. Grennfelt. 1988. Critical loads for sulphur and nitrogen. Unece/nordic council workshop report, Skokloster, Sweden. Copenhagen, p. 418.
  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia. 41 (1):199–219. doi:10.1080/00785236.1995.10422044.
  • Nowak, J. B., J. A. Neuman, R. Bahreini, A. M. Middlebrook, J.S. Holloway, S. A. McKeen, D. D. Parrish, T. B. Ryerson, and M. Trainer. 2012. Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. Geophys. Res. Lett. 39 (7). doi: 10.1029/2012GL051197.
  • Office of Inspector General (OIG). 2017. Eleven years after agreement EPA has not developed reliable emission estimation methods to determine whether animal feeding operations comply with Clean Air Act and Other statutes (17-P-0396). https://www.epaoig.gov/reports/audit/eleven-years-after-agreement-epa-has-not-developed-reliable-emission-estimation.
  • Ontman, R., P.M. Groffman, C.T. Driscoll, and Z. Cheng. 2023. Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry 163 (3):265–77. doi:10.1007/s10533-023-01031-0.
  • Paciga, A. L., I. Riipinen, and S. N. Pandis. 2014. Effect of ammonia on the volatility of organic diacids. Environ. Sci. Technol. 48 (23):13769–75. doi:10.1021/es5037805.
  • Paerl, H. W. 1995. Enhancement of marine primary production by nitrogen-enriched acid rain. Nature 315 (6022):747–49. doi:10.1038/315747a0.
  • Paerl, H. W. 2002. Connecting atmospheric deposition to coastal eutrophication. Environ. Sci. Technol. 36 (15):323A–6A. doi:10.1021/es022392a.
  • Paerl, H. W. 2009. Controlling eutrophication along the freshwater–marine continuum: Dual nutrient (N and P) reductions are essential. Estuar. Coast. 32 (4):593–601. doi:10.1007/s12237-009-9158-8.
  • Paerl, H. W., and M. A. Barnard. 2020. Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human- and climatically-altered world. Harmful. Algae. 96:101845. doi:10.1016/j.hal.2020.101845.
  • Paerl, H.W., W. S. Gardner, K. E. Havens, A.R. Joyner, M. J. McCarthy, S. E. Newell, B. Qin, and J.T. Scott. 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful. Algae. 54:213–22. doi:10.1016/j.hal.2015.09.009.
  • Paerl, H. W., and M. F. Piehler, Eds. 2008. Nitrogen and marine eutrophication. 2nd ed. San Diego, CA: Academic Press.
  • Pai, S. J., C. L. Heald, and J. G. Murphy. 2021. Exploring the global importance of atmospheric ammonia oxidation. ACS. Earth. Space. Chem. 5 (7):1674–85. doi:10.1021/acsearthspacechem.1c00021.
  • Pan, D., D. L. Mauzerall, R. Wang, X. Guo, M. Puchalski, Y. Guo, S. Song, D. Tong, A. P. Sullivan, B. A. Schichtel, et al. 2024. Regime shift in atmospheric secondary inorganic aerosol formation in the rural United States. Accepted for publication in Nature Geoscience, manuscript #NGS-2023-10- 02034-T.
  • Pardo, L.H., M. Fenn, C.L. Goodale, L.H. Geiser, C.T. Driscoll, E. Allen, J. Baron, R. Bobbink, W.D. Bowman, C. Clark, et al. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol. Appl. 21 (8):3049–82. doi:10.1890/10-2341.1.
  • Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin. 2004. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. 109 (D15). doi:10.1029/2003JD004473.
  • Patel, K. F., I. J. Fernandez, S. J. Nelson, J. Malcomb, and S. A. Norton. 2020. Contrasting stream nitrate and sulfate response to recovery from experimental watershed acidification. Biogeochemistry. 151 (2):127–38. doi:10.1007/s10533-020-00711-5.
  • Paulot, F., D. J. Jacob, and D. K. Henze. 2013. Sources and processes contributing to nitrogen deposition: An adjoint model analysis applied to biodiversity hotspots worldwide. Environ. Sci. Technol. 47 (7):3226–33. doi:10.1021/es3027727.
  • Paulot, F., D. J. Jacob, R. W. Pinder, J. O. Bash, K. Travis, and D. K. Henze. 2014. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. 119 (7):4343–64. doi:10.1002/2013JD021130.
  • Paulot, F., D. Paynter, P. Ginoux, V. Naik, S. Whitburn, M. Van Damme, L. Clarisse, P. F. Coheur, and L. W. Horowitz. 2017. Gas-aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophys. Res. Lett. 44 (15):8084–93. doi:10.1002/2017GL074215.
  • Pavlovic, N. R., S. Y. Chang, J. Huang, K. Craig, C. Clark, K. Horn, and C. T. Driscoll. 2023. Empirical nitrogen and sulfur critical loads of U.S. tree species and their uncertainties with machine learning. Sci. Total Environ 857:159252. doi:10.1016/j.scitotenv.2022.159252.
  • Phillips, S. B., S. Arya, and V. P. Aneja. 2004. Ammonia flux and dry deposition velocity from near-surface concentration gradient measurements over a grass surface in North Carolina. Atmos. Environ. 38 (21):3469–80. doi:10.1016/j.atmosenv.2004.02.054.
  • Pina, A. J., R. S. Schumacher, A. S. Denning, W. B. Faulkner, J. S. Baron, J. Ham, D. S. Ojima, and J. L. Collett. 2019. Reducing wet ammonium deposition in Rocky Mountain National Park: The development and evaluation of a pilot early warning system for agricultural operations in eastern Colorado. Environ. Manag. 64 (5):626–39. doi:10.1007/s00267-019-01209-z.
  • Pinder, R. W., P. J. Adams, and S. N. Pandis. 2007. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the Eastern United States. Environ. Sci. Technol. 41 (2):380–86. doi:10.1021/es060379a.
  • Pinder, R. W., N. D. Bettez, G. B. Bonan, T. L. Greaver, W. R. Wieder, W. H. Schlesinger, and E. A. Davidson. 2013. Impacts of human alteration of the nitrogen cycle in the US on radiative forcing. Biogeochemistry. 114 (1):25–40. doi:10.1007/s10533-012-9787-z.
  • Pinder, R. W., E. A. Davidson, C. L. Goodale, T. L. Greaver, J. D. Herrick, and L. Liu. 2012. Climate change impacts of US reactive nitrogen. Proc. Natl. Acad. Sci. USA. 109 (20):7671–75. doi:10.1073/pnas.1114243109.
  • Pinder, R. W., J. T. Walker, J. O. Bash, K. E. Cady-Pereira, D. K. Henze, M. Luo, G. B. Osterman, and M. W. Shephard. 2011. Quantifying spatial and temporal variability in atmospheric ammonia with in situ and space-based observations. Geophys. Res. Lett. 38:L04802.
  • Pleim, J. E., J. O. Bash, J. T. Walker, and E. J. Cooter. 2013. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models. J. Geophys. Res. 118 (9):3794–806. doi:10.1002/jgrd.50262.
  • Poor, N. D., L. M. Cross, and R. L. Dennis. 2013. Lessons learned from the Bay Region Atmospheric Chemistry Experiment (BRACE) and implications for nitrogen management of Tampa Bay. Atmos. Environ. 70:75–83. doi:10.1016/j.atmosenv.2012.12.030.
  • Pope Iii, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Porter, E., T.F. Blett, D. Potter, and C. Huber. 2005. Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience 55 (7):603–12. doi:10.1641/0006-3568(2005)055[0603:PROFLI]2.0.CO;2.
  • Pozzer, A., A. P. Tsimpidi, V. A. Karydis, A. de Meij, and J. Lelieveld. 2017. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 17 (20):12813–26. doi:10.5194/acp-17-12813-2017.
  • Preble, C. V., R. A. Harley, and T. W. Kirchstetter. 2019. Control technology-driven changes to in-use heavy-duty diesel truck emissions of nitrogenous species and related environmental impacts. Environ. Sci. Technol. 53 (24):14568–76. doi:10.1021/acs.est.9b04763.
  • Pruitt, E. S. 2017. Letter to Mr. Tom Frantz, president, association of irritated residents. Washington, DC: U.S. Environmental Protection Agency.
  • Puchalski, M. A., M. E. Sather, J. T. Walker, C. M. B. Lehmann, D. A. Gay, J. Mathew, and W. P. Robarge. 2011. Passive ammonia monitoring in the United States: Comparing three different sampling devices. J. Environ. Monit. 13 (11):3156–67. doi:10.1039/C1EM10553A.
  • Puchalski, M.A., J.T. Walker, G.M. Beachley, M.A. Zondlo, K.B. Benedict, R.H. Grant, B.A. Schichtel, C.M. Rogers, A.B. Leytem, J. Rice, et al. 2019. Need for improved monitoring of spatial and temporal trends of reduced nitrogen. EM Magazine.
  • Pye, H. O. T., A. Nenes, B. Alexander, A. P. Ault, M. C. Barth, S. L. Clegg, J. L. Collett Jr, K. M. Fahey, C. J. Hennigan, H. Herrmann, et al. 2020. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 20 (8):4809–88. doi:10.5194/acp-20-4809-2020.
  • Rabalais, N. N., R. E. Turner, Q. Dortch, D. Justic, V. J. Bierman, and W. J. Wiseman. 2002. Nutrient-enhanced productivity in the northern Gulf of Mexico: Past, present and future. Hydrobiologia. 475 (1):39–63. doi:10.1023/A:1020388503274.
  • Rao, L. E., E. B. Allen, and T. Meixner. 2010. Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecol. Appl. 20 (5):1320–35. doi:10.1890/09-0398.1.
  • Requia, W. J., B. A. Coull, and P. Koutrakis. 2019. The impact of wildfires on particulate carbon in the western USA. Atmos. Environ. 213:1–10. doi:10.1016/j.atmosenv.2019.05.054.
  • Rhodes, C., A. Bingham, A. M. Heard, J. Hewitt, J. Lynch, R. Waite, and M. D. Bell. 2017. Diatoms to human uses: Linking nitrogen deposition, aquatic eutrophication, and ecosystem services. Ecosphere. 8 (7):e01858. doi:10.1002/ecs2.1858.
  • Rodgers, C. D. 2000. Inverse methods for atmospheric sounding. Singapore: World Scientific.
  • Rosa, L., and P. Gabrielli. 2023. Energy and food security implications of transitioning synthetic nitrogen fertilizers to net-zero emissions. Environ. Res. Lett. 18 (1):014008. doi:10.1088/1748-9326/aca815.
  • Roy, P.-O., M. Huijbregts, L. Deschnes, and M. Margni. 2012. Spatially-differentiated atmospheric source-receptor relationships for nitrogen oxides, sulfur oxides and ammonia emissions at the global scale for life cycle impact assessment. Atmos. Environ. 62:74–81. doi:10.1016/j.atmosenv.2012.07.069.
  • Rubin, H. J., J. S. Fu, F. Dentener, R. Li, K. Huang, and H. Fu. 2023. Global nitrogen and sulfur deposition mapping using a measurement-model fusion approach. Atmos. Chem. Phys. 23 (12):7091–102. doi:10.5194/acp-23-7091-2023.
  • Saylor, R., L. Myles, D. Sibble, J. Caldwell, and J. Xing. 2015. Recent trends in gas-phase ammonia and PM2.5 ammonium in the Southeast United States. J. Air Waste Manag. Assoc. 65 (3):347–57. doi:10.1080/10962247.2014.992554.
  • Schiferl, L. D., C. L. Heald, M. Van Damme, L. Clarisse, C. Clerbaux, P. F. Coheur, J. B. Nowak, J. A. Neuman, S. C. Herndon, J. R. Roscioli, et al. 2016. Interannual variability of ammonia concentrations over the United States: Sources and implications. Atmos. Chem. Phys. 16 (18):12305–28. doi:10.5194/acp-16-12305-2016.
  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. Paterson, K. G. Beaty, M. Lyng, and S. E. M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37 year whole ecosystem experiment. Proc. Natl. Acad. Sci. USA. 105 (32):11254–58. doi:10.1073/pnas.0805108105.
  • Schlesinger, W. H., and E. S. Bernhardt. 2020. Biogeochemistry: An analysis of global change. Oxford: Academic Press.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken: Wiley.
  • Shao, S., C. T. Driscoll, T. J. Sullivan, D. A. Burns, B. Baldigo, G. B. Lawrence, and T. C. McDonnell. 2020. The response of stream ecosystems in the Adirondack region of New York to historical and future changes in atmospheric deposition of sulfur and nitrogen. Sci. Total Environ. 716:137113. doi:10.1016/j.scitotenv.2020.137113.
  • Shephard, M. W., E. Dammers, K. E. Cady-Pereira, S. K. Kharol, J. Thompson, Y. Gainariu-Matz, J. Zhang, C.A. McLinden, A. Kovachik, M. Moran, et al. 2020. Ammonia measurements from space with the Cross-track Infrared Sounder: Characteristics and applications. Atmos. Chem. Phys. 20 (4):2277–302. doi:10.5194/acp-20-2277-2020.
  • Sheppard, E. A. 2023. CASAC Review of the EPA’s policy assessment for the review of the secondary National Ambient Air Quality Standards for oxides of nitrogen, oxides of sulfur and particulate matter (External Review Draft - May 2023). https://casac.epa.gov/ords/sab/r/sab_apex/casac/home.
  • Shindell, D. T., J. F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P. J. Young, Y. H. Lee, L. Rotstayn, N. Mahowald, et al. 2013. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 13 (6):2939–74. doi:10.5194/acp-13-2939-2013.
  • Shonkwiler, S., and J. Ham. 2018. Ammonia emissions from a beef feedlot: Comparison of inverse modeling techniques using long-path and point measurements of fenceline NH3. Agric. For. Meteorol. 258:29–42. doi:10.1016/j.agrformet.2017.10.031.
  • Silvern, R. F., D. J. Jacob, P. S. Kim, E. A. Marais, J. R. Turner, P. Campuzano-Jost, and J. L. Jimenez. 2017. Inconsistency of ammonium - sulfate aerosol ratios with thermodynamic models in the eastern US: A possible role of organic aerosol. Atmos. Chem. Phys. 17 (8):5107–18. doi:10.5194/acp-17-5107-2017.
  • Simkin, S. M., E. B. Allen, W. D. Bowman, C. M. Clark, J. Belnap, M. L. Brooks, B. S. Cade, S. L. Collins, L. H. Geiser, F. S. Gilliam, et al. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proc. Natl. Acad. Sci. USA. 113 (15):4086–91. doi:10.1073/pnas.1515241113.
  • Sitwell, M., M. W. Shephard, Y. Rochon, K. Cady-Pereira, and E. Dammers. 2022. An ensemble-variational inversion system for the estimation of ammonia emissions using CrIS satellite ammonia retrievals. Atmos. Chem. Phys. 22 (10):6595–624. doi:10.5194/acp-22-6595-2022.
  • Skorupka, M., and A. Nosalewicz. 2021. Ammonia Volatilization from Fertilizer Urea—A new challenge for agriculture and industry in view of growing global demand for food and energy crops. Agriculture 11 (9):822. doi:10.3390/agriculture11090822.
  • Smil, V. 2001. Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge, USA: The MIT Press.
  • Solomon, P.A., D. Crumpler, J.B. Flanagan, R.K.M. Jayanty, E.E. Rickman, and C.E. McDade. 2014. U.S. national PM2.5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air & Waste Manag. Assoc. 64 (12):1410–38. doi:10.1080/10962247.2014.956904.
  • Sorooshian, A., S. M. Murphy, S. Hersey, H. Gates, L. T. Padro, A. Nenes, F.J. Brechtel, H. Jonsson, R. C. Flagan, and J. H. Seinfeld. 2008. Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys. 8 (17):5489–520. doi:10.5194/acp-8-5489-2008.
  • South Coast Air Quality Management District (SCAQMD). 2020. Final south coast air basin attainment plan for 2006 24-Hour PM2.5 standard. https://www.federalregister.gov/documents/2023/10/12/2023-22518/air-plan-approval-california-south-coast-air-quality-management-district.
  • Spracklen, D. V., K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann. 2005. A global off-line model of size-resolved aerosol microphysics: II. Identification of key uncertainties. Atmos. Chem. Phys. 5 (12):3233–50. doi:10.5194/acp-5-3233-2005.
  • Stevens, C. J. 2016. How long do ecosystems take to recover from atmospheric nitrogen deposition? Biol. Conserv. 200:160–67. doi:10.1016/j.biocon.2016.06.005.
  • Stevens, C. J., P. Manning, L. J. L. van den Berg, M. C. C. de Graaf, G. W. W. Wamelink, A. W. Boxman, A. Bleeker, P. Vergeer, M. Arroniz-Crespo, J. Limpens, et al. 2011. Ecosystem responses to reduced and oxidized nitrogen inputs in European terrestrial habitats. Environ. Pollut. 159 (3):665–76. doi:10.1016/j.envpol.2010.12.008.
  • Stoddard, J. L., J. S. Kahl, R. Haeuber, S. G. Paulsen, R. Birnbaum, F. A. Deviney, J.R. Webb, D. R. DeWalle, W. Sharpe, C. T. Driscoll, et al. 2004. Have U.S. surface waters responded to the 1990 clean air act amendments? Environ. Sci. Technol. 38 (24):484A–90A. doi:10.1021/es040686l.
  • Store, J. 2023. Council reaches agreement on amendment to industrial emissions directive. https://www.consilium.europa.eu/en/press/press-releases/2023/03/16/council-reaches-agreement-on-amendments-to-industrial-emissions-directive/.
  • Sun, J., J. S. Fu, and K. Huang. 2016. Organic nitrates and other oxidized nitrogen compounds contribute significantly to the total nitrogen depositions in the United States. Proc. Natl. Acad. Sci. USA. 113 (31):E4433–34. doi:10.1073/pnas.1608717113.
  • Sun, K., L. Tao, D.J. Miller, D. Pan, L. M. Golston, M. A. Zondlo, R. J. Griffin, H. W. Wallace, Y. J. Leong, M. M. Yang, et al. 2017. Vehicle emissions as an important urban ammonia source in the United States and China. Environ. Sci. Technol. 51 (4):2472–81. doi:10.1021/acs.est.6b02805.
  • Sutton, M. A., J. K. Burkhardt, D. Guerin, E. Nemitz, and D. Fowler. 1998. Development of resistance models to describe measurements of bi-directional ammonia surface -atmosphere exchange. Atmos. Environ. 32 (3):473–80. doi:10.1016/S1352-2310(97)00164-7.
  • Sutton, M. A., S. Reis, S. N. Riddick, U. Dragosits, E. Nemitz, M. R. Theobald, Y.S. Tang, C.F. Braban, M. Vieno, A. J. Dore, et al. 2013. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368 (1621):20130166. doi:10.1098/rstb.2013.0166.
  • Sutton, M. A., D. Simpson, P.E. Levy, R.I. Smith, S. Reis, M. Van Oijen, and W. I. M. De Vries. 2008. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration. Global Change Biol. 14 (9):2057–63. doi:10.1111/j.1365-2486.2008.01636.x.
  • Talluto, M. V., and K. N. Suding. 2008. Historical change in coastal sage scrub in southern California, USA in relation to fire frequency and air pollution. Landscape Ecol. 23 (7):803–15. doi:10.1007/s10980-008-9238-3.
  • Tan, J., J.S. Fu, F. Dentener, J. Sun, L. Emmons, S. Tilmes, K. Sudo, J. Flemming, J. E. Jonson, S. Gravel, et al. 2018. Multi-model study of HTAP II on sulfur and nitrogen deposition. Atmos. Chem. Phys. 18 (9):6847–66. doi:10.5194/acp-18-6847-2018.
  • Tan, J., J. S. Fu, and J. H. Seinfeld. 2020. Ammonia emission abatement does not fully control reduced forms of nitrogen deposition. Proc. Natl. Acad. Sci. 117 (18):9771–75. doi:10.1073/pnas.1920068117.
  • Tao, L., K. Sun, D.J. Miller, D. Pan, L. M. Golston, and M. A. Zondlo. 2015. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants. Appl. Phys. B. 119 (1):153–64. doi:10.1007/s00340-015-6069-1.
  • Thakrar, S. K., S. Balasubramanian, P.J. Adams, I. S. M. L. Azevedo, N. Z. Muller, S. N. Pandis, S. Polasky, C. A. Pope III, A.L. Robinson, J. S. Apte, et al. 2020. Reducing Mortality from Air Pollution in the United States by targeting specific emission sources. Environ. Sci. Technol. Lett. 7 (9):639–45. doi:10.1021/acs.estlett.0c00424.
  • Thomas, R., C. Canham, K. Weathers, and C. Goodale. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3 (1):13–17. doi:10.1038/ngeo721.
  • Thompson, T. M., M. A. Rodriguez, M. G. Barna, K. A. Gebhart, J. L. Hand, D. E. Day, W. C. Malm, K. B. Benedict, J. L. Collett Jr, and B.A. Schichtel. 2015. Rocky Mountain National Park reduced nitrogen source apportionment. J. Geophys. Res. 120 (9):4370–84. doi:10.1002/2014JD022675.
  • Thomson, A. M., K. V. Calvin, S. J. Smith, G. P. Kyle, A. Volke, P. Patel, S. Delgado-Arias, B. Bond-Lamberty, M. A. Wise, L. E. Clarke, et al. 2011. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109 (1–2):77. doi:10.1007/s10584-011-0151-4.
  • Thornhill, G. D., W. J. Collins, R. J. Kramer, D. Olivié, R. B. Skeie, F. M. O’Connor, N. L. Abraham, R. Checa-Garcia, S. E. Bauer, M. Deushi, et al. 2021. Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmos. Chem. Phys. 21 (2):853–74. doi:10.5194/acp-21-853-2021.
  • Thunis, P., A. Clappier, M. Beekmann, J.P. Putaud, C. Cuvelier, J. Madrazo, and A. de Meij. 2021. Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): Consequences for air quality plans. Atmos. Chem. Phys. 21 (12):9309–27. doi:10.5194/acp-21-9309-2021.
  • Tomich, T. P., S. B. Brodt, R. A. Dahlgren, and K. M. Scow. 2016. The California nitrogen assessment: Challenges and solutions for people, agriculture, and the environment. Oakland, CA: University of California Press.
  • Tomsche, L., F. Piel, T. Mikoviny, C. J. Nielsen, H. Guo, P. Campuzano-Jost, B.A. Nault, M. K. Schueneman, J. L. Jimenez, H. Halliday, et al. 2023. Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States. Atmos. Chem. Phys. 23 (4):2331–43. doi:10.5194/acp-23-2331-2023.
  • Toro, C., D. Sonntag, J. Bash, G. Burke, B. N. Murphy, K. M. Seltzer, H. Simon, M. W. Shephard and K. E. Cady-Pereira. 2024. Sensitivity of air quality to vehicle ammonia emissions in the United States. Atmos. Environ. 327:120484. doi:10.1016/j.atmosenv.2024.120484.
  • Townhill, B. L., J. Tinker, M. Jones, S. Pitois, V. Creach, S. D. Simpson, S. Dye, E. Bear, and J. K. Pinnegar. 2018. Harmful algal blooms and climate change: Exploring future distribution changes. ICES J. Mar. Sci. 75 (6):1882–93. doi:10.1093/icesjms/fsy113.
  • Trainer, V. L., S. K. Moore, G. Hallegraeff, R. M. Kudela, A. Clement, J.I. Mardones, and W. P. Cochlan. 2020. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful. Algae. 91:101591. doi:10.1016/j.hal.2019.03.009.
  • Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164 (2):347–55. doi:10.1111/j.1469-8137.2004.01159.x.
  • Tsimpidi, A. P., V. A. Karydis, and S. N. Pandis. 2007. Response of inorganic fine particulate matter to emission changes of sulfur dioxide and ammonia: The Eastern United States as a case study. J. Air Waste Manag. Assoc. 57 (12):1489–98. doi:10.3155/1047-3289.57.12.1489.
  • Turner, A. J., D. K. Henze, R. V. Martin, and A. Hakami. 2012. The spatial extent of source influences on modeled column concentrations of short-lived species. Geophys. Res. Lett. 39 (12). doi: 10.1029/2012GL051832.
  • UNECE. 1999. Protocol to the 1979 convention on long-range transboundary air pollution to abate acidification, eutrophication and ground-level ozone. https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone.
  • UNEP. 2013. Drawing down N2O to protect climate and the ozone layer: A UNEP synthesis report. https://www.unep.org/resources/report/drawing-down-n2o-protect-climate-and-ozone-layer-unep-synthesis-report.
  • United Nations Economic Commission for Europe (UNECE). 2012. 1999 protocol to abate acidification, eutrophication and ground-level ozone to the convention on long-range transboundary air pollution, as amended on 4 May 2012. https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone;.
  • Updyke, K. M., T. B. Nguyen, and S. A. Nizkorodov. 2012. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 63:22–31. doi:10.1016/j.atmosenv.2012.09.012.
  • USDA. 2023. Environmental quality incentives program (10601-0008-31(IN1)). In Natural Resources Conservation Service ed.https://www.nrcs.usda.gov/programs-initiatives/eqip-environmental-quality-incentives.
  • U.S. EPA. 2008. Integrated Science Assessment (ISA) for oxides of nitrogen and sulfur ecological criteria. Washington, DC: U.S. Environmental Protection Agency.
  • U.S. EPA. 2010. Chesapeake Bay total maximum daily load or nitrogen, phosphorus and sediment. https://www.epa.gov/chesapeake-bay-tmdl/chesapeake-bay-tmdl-document.
  • U.S. EPA. 2019a. Guidance on regional haze state implementation plans for the second implementation period. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC.
  • U.S. EPA. 2019b. Integrated science assessment for particulate matter, EPA/600/R-19/188. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC.
  • U.S. EPA. 2020. Integrated Science Assessment (ISA) for oxides of nitrogen, oxides of sulfur and particulate matter ecological criteria. Washington, DC: U.S. Environmental Protection Agency.
  • U.S. EPA. 2022a. Policy assessment for the reconsideration of the national Ambient Air Quality Standards for particulate matter, EPA-452/R-22-004. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC.
  • U.S. EPA. 2022b. Supplement to the 2019 Integrated Science Assessment for particulate matter, EPA/600/R-22/028. Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC.
  • U.S. EPA. 2023a. Epidemiology and health effects of cyanobacteria research. https://www.epa.gov/water-research/epidemiology-and-health-effects-cyanobacteria-research.
  • U.S. EPA. 2023b. National emission inventory emissions trends report. https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data.
  • U.S. EPA. 2023c. New source performance standards. Accessed October 13, 2023. https://www.epa.gov/stationary-sources-air-pollution/new-source-performance-standards.
  • U.S. EPA. 2023d. NPDES Nutrient Data Tables, 2016 data. Accessed September 23, 2023. https://www.epa.gov/npdes/npdes-nutrient-data-tables.
  • U.S. EPA. 2023e. MOVES4: Latest version of motor vehicle emission simulator. Ann Arbor, MI: Office of Transportation and Air Quality, U.S. Environmental Protection Agency.
  • U.S. EPA-SAB. 2011. Reactive nitrogen in the United States: An analysis of inputs, flows, consequences and management options. A report of the EPA Science Advisory Board.
  • Valiela, I., C. Owens, E. Elmstrom, and J. Lloret. 2016. Eutrophication of cape cod estuaries: Effect of decadal changes in global-driven atmospheric and local-scale wastewater nutrient loads. Mar. Pollut. Bull. 110 (1):309–15. doi:10.1016/j.marpolbul.2016.06.047.
  • Van Damme, M., L. Clarisse, S. Whitburn, J. Hadji-Lazaro, D. Hurtmans, C. Clerbaux, and P.-F. O. Coheur. 2018. Industrial and agricultural ammonia point sources exposed. Nature. 564 (7734):99–103. doi:10.1038/s41586-018-0747-1.
  • Van Den Berg, L. J. L., E. Dorland, P. Vergeer, M. A. C. Hart, R. Bobbink, and J. G. M. Roelofs. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol. 166 (2):551–64. doi:10.1111/j.1469-8137.2005.01338.x.
  • van der Graaf, S., E. Dammers, A. Segers, R. Kranenburg, M. Schaap, M. W. Shephard, and J. W. Erisman. 2022. Data assimilation of CrIS NH3 satellite observations for improving spatiotemporal NH3 distributions in LOTOS-EUROS. Atmos. Chem. Phys. 22 (2):951–72. doi:10.5194/acp-22-951-2022.
  • van Vuuren, D. P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.-F. Lamarque, et al. 2011. The representative concentration pathways: An overview. Clim. Change. 109 (1):5. doi:10.1007/s10584-011-0148-z.
  • Vasilakos, P., A. Russell, R. Weber, and A. Nenes. 2018. Understanding nitrate formation in a world with less sulfate. Atmos. Chem. Phys. 18 (17):12765–75. doi:10.5194/acp-18-12765-2018.
  • Vayenas, D. V., S. Takahama, C. I. Davidson, and S. N. Pandis. 2005. Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies. J. Geophys. Res. 110 (D7). doi:10.1029/2004JD005038.
  • Vitousek, P. M., J. Aber, S. E. Bayley, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and G. D. Tilman. 1997. Human alteration of the global nitrogen cycle: Causes and consequences. Ecol. Appl. 7 (3):737–50. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2.
  • Vitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry. 13 (2):87–115. doi:10.1007/BF00002772.
  • von Bobrutzki, K., C. F. Braban, D. Famulari, S. K. Jones, T. Blackall, T. E. L. Smith, M. Blom, H. Coe, M. Gallagher, M. Ghalaieny, et al. 2010. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Tech. 3 (1):91–112. doi:10.5194/amt-3-91-2010.
  • Walker, J. T., G. M. Beachley, H. M. Amos, J.S. Baron, J. Bash, R. Baumgardner, M. D. Bell, K. B. Benedict, X. Chen, D. W. Clow, et al. 2019. Science needs for continued development of total nitrogen deposition budgets in the United States, U.S. Environmental Protection Agency, Washington, DC.
  • Walker, J. T., G. Beachley, L. Zhang, K. B. Benedict, B. C. Sive, and D. B. Schwede. 2020. A review of measurements of air-surface exchange of reactive nitrogen in natural ecosystems across North America. Sci. Total Environ. 698:133975. doi:10.1016/j.scitotenv.2019.133975.
  • Walker, J. T., X. Chen, Z. Wu, D. Schwede, R. Daly, A. Djurkovic, A. C. Oishi, E. Edgerton, J. Bash, J. Knoepp, et al. 2023. Atmospheric deposition of reactive nitrogen to a deciduous forest in the southern Appalachian Mountains. Biogeosciences. 20 (5):971–95. doi:10.5194/bg-20-971-2023.
  • Wang, J., D. J. Jacob, and S. T. Martin. 2008. Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions. J. Geophys. Res. 113 (D11). doi:10.1029/2007JD009368.
  • Wang, X. Q., C. G. Liu, D. Neff, P. F. Fulvio, R. T. Mayes, A. Zhamu, Q. Fang, G. R. Chen, H. M. Meyer, B. Z. Jang, et al. 2013. Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. J. Mater. Chem.A 1 (27):7920–26. doi:10.1039/C3ta11342f.
  • Wang, R., D. Pan, X. Guo, K. Sun, L. Clarisse, M. Van Damme, P.F. Coheur, C. Clerbaux, M. Puchalski, and M. A. Zondlo. 2023. Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements. EGUsphere. 2023:1–33. doi:10.5194/egusphere-2023-190.
  • Wang, S., J. Xing, C. Jang, Y. Zhu, J.S. Fu, and J. Hao. 2011. Impact assessment of ammonia emissions on inorganic aerosols in East China using response surface modeling technique. Environ. Sci. Technol. 45 (21):9293–300. doi:10.1021/es2022347.
  • Watson, J. G. 2002. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 52 (6):628–713. doi:10.1080/10473289.2002.10470813.
  • Weber, R. J., H. Guo, A. G. Russell, and A. Nenes. 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci. 9 (4):282–85. doi:10.1038/ngeo2665.
  • Wentworth, G. R., J.G. Murphy, K. B. Benedict, E. J. Bangs, and J.L. Collett Jr. 2016. The role of dew as a night-time reservoir and morning source for atmospheric ammonia. Atmos. Chem. Phys. 16 (11):7435–49. doi:10.5194/acp-16-7435-2016.
  • West, J. J., A. S. Ansari, and S. N. Pandis. 1999. Marginal PM25: Nonlinear aerosol mass response to sulfate reductions in the Eastern United States. J. Air Waste Manag. Assoc. 49 (12):1415–24. doi:10.1080/10473289.1999.10463973.
  • Whitall, D., B. Hendrickson, and H. W. Paerl. 2003. Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River estuary, North Carolina. Environ. Int. 29 (2–3):393–99. doi:10.1016/S0160-4120(02)00175-7.
  • Whitburn, S., M. Van Damme, J. W. Kaiser, G. R. van der Werf, S. Turquety, D. Hurtmans, L. Clarisse, C. Clerbaux, and P. F. Coheur. 2015. Ammonia emissions in tropical biomass burning regions: Comparison between satellite-derived emissions and bottom-up fire inventories. Atmos. Environ. 121:42–54. doi:10.1016/j.atmosenv.2015.03.015.
  • Wilkins, K., C. Clark, and J. Aherne. 2022. Ecological thresholds under atmospheric nitrogen deposition for 1200 herbaceous species and 24 communities across the United States. Global Change Biol. 28 (7):2381–95. doi:10.1111/gcb.16076.
  • Williams, J. J., J. A. Lynch, J. E. Saros, and S. G. Labou. 2017. Critical loads of atmospheric N deposition for phytoplankton nutrient limitation shifts in western U.S. mountain lakes. Ecosphere. 8 (10):e01955. doi:10.1002/ecs2.1955.
  • Wing, S., R. A. Horton, N. Muhammad, G. R. Grant, M. Tajik, and K. Thu. 2008. Integrating epidemiology, education, and organizing for environmental justice: Community health effects of industrial hog operations. Am. J. Public Health.98 (8):1390–97. doi:10.2105/AJPH.2007.110486.
  • Wing, S., and J. Johnston. 2014. Industrial hog operations in North Carolina disproportionately impact African-Americans. Hispanics and American Indians. http://www.ncpolicywatch.com/wp-content/uploads/2014/09/UNC-Report.pdf.
  • World Health Organization. 2021. New WHO global air quality guidelines aim to save millions of lives from air pollution. https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution.
  • Wurtsbaugh, W. A., H. W. Paerl, and W.K. Dodds. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews 6 (5). doi:10.1002/wat2.1373.
  • Wyer, K. E., D. B. Kelleghan, V. Blanes-Vidal, G. Schauberger, and T. P. Curran. 2022. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Health. 323:116285. doi:10.1016/j.jenvman.2022.116285.
  • Xu, L., and J.E. Penner. 2012. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys. 12 (20):9479–504. doi:10.5194/acp-12-9479-2012.
  • Xu, R., H. Tian, S. Pan, S. A. Prior, Y. Feng, W. D. Batchelor, J. Chen, and J. Yang. 2019. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Global Change Biol. 25 (1):314–26. doi:10.1111/gcb.14499.
  • Xu, X., J. Wang, D. K. Henze, W. Qu, and M. Kopacz. 2013. Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. J. Geophys. Res. 118 (12):6396–413. doi:10.1002/jgrd.50515.
  • Xu, W., Y. Zhao, Z. Wen, Y. Chang, Y. Pan, Y. Sun, X. Ma, Z. Sha, Z. Li, J. Kang, et al. 2022. Increasing importance of ammonia emission abatement in PM2.5 pollution control. Sci. Bull. 67 (17):1745–49. doi:10.1016/j.scib.2022.07.021.
  • Yanai, R. D., M. A. Vadeboncoeur, S. P. Hamburg, M. A. Arthur, C. Fuss, P. M. Groffman, T. G. Siccama, and C. T. Driscoll. 2013. From missing source to missing sink: Long-term changes in the nitrogen budget of a northern hardwood forest. Environ. Sci. Technol. 47 (20):11440–48. doi:10.1021/es4025723.
  • Yao, X., and L. Zhang. 2019. Causes of large increases in atmospheric ammonia in the last decade across North America. ACS. Omega. 4 (26):22133–42. doi:10.1021/acsomega.9b03284.
  • Yokelson, R. J., J. D. Crounse, P. F. DeCarlo, T. Karl, S. Urbanski, E. Atlas, T. Campos, Y. Shinozuka, V. Kapustin, A. D. Clarke, et al. 2009. Emissions from biomass burning in the Yucatan. Atmos. Chem. Phys. 9 (15):5785–812. doi:10.5194/acp-9-5785-2009.
  • Yu, X. Y., T. Lee, B. Ayers, S. M. Kreidenweis, W. Malm, and J. L. Collett Jr. 2006. Loss of fine particle ammonium from denuded nylon filters. Atmos. Environ. 40 (25):4797–807. doi:10.1016/j.atmosenv.2006.03.061.
  • Zeng, Z. C., L. Lee, C. Qi, L. Clarisse, and M. Van Damme. 2023. Optimal estimation retrieval of tropospheric ammonia from the geostationary interferometric infrared sounder on board FengYun-4B. Atmos. Meas. Tech. 16 (15):3693–713. doi:10.5194/amt-16-3693-2023.
  • Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger, C. C. Carouge, A. van Donkelaar, Y. X. Wang, and D. Chen. 2012. Nitrogen deposition to the United States: Distribution, sources, and processes. Atmos. Chem. Phys. 12 (10):4539–54. doi:10.5194/acp-12-4539-2012.
  • Zhang, L., J. Shao, X. Lu, Y. Zhao, Y. Hu, D. K. Henze, H. Liao, S. Gong, and Q. Zhang. 2016. Sources and processes affecting fine particulate matter pollution over North China: An adjoint analysis of the Beijing APEC period. Environ. Sci. Technol. 50 (16):8731–40. doi:10.1021/acs.est.6b03010.
  • Zhu, L., D. Henze, J. Bash, G. R. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and S. Capps. 2015. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys. 15 (22):12823–43. doi:10.5194/acp-15-12823-2015.
  • Zhu, L., D. K. Henze, K. E. Cady-Pereira, M. W. Shephard, M. Luo, R. W. Pinder, J. O. Bash, and G. R. Jeong. 2013. Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint model. J. Geophys. Res. 118 (8):3355–68. doi:10.1002/jgrd.50166.
  • Zhu, S., K. Wu, S. A. Nizkorodov, and D. Dabdub. 2022. Modeling reactive ammonia uptake by secondary organic aerosol in a changing climate: A WRF-CMAQ evaluation. Front. Environ. Sci. 10. doi:10.3389/fenvs.2022.867908.
  • Zimmermann, A. 2023. Politico. https://www.politico.eu/article/eu-conservative-big-win-industrial-emissions-directive/.