303
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

Parameterization of H2SO4 and organic contributions to volatile PM in aircraft plumes at ground idle

ORCID Icon & ORCID Icon
Pages 490-510 | Received 21 Feb 2024, Accepted 02 May 2024, Published online: 12 Jul 2024

References

  • Anderson, B.E., A.J. Beyersdorf, C.H. Hudgins, J.V. Plant, K.L. Thornhill, E.L. Winstead, L.D. Ziemba, R. Howard, E. Corporan, R.C. Miake-Lye, et al., (2011), Alternative aviation fuel experiment (AAFEX). Report No. NASA/TM-2011-217059.
  • Corbin, J.C., T. Schripp, B.E. Anderson, G.J. Smallwood, P. LeClercq, E.C. Crosbie, S. Achterberg, D.W. P, R.C. Miake-Lye, Z. Yu, et al. 2022. Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: Comparison of measurement techniques for mass, number, and size. Atmos. Meas. Tech 15 (10):3223–42. doi:10.5194/amt-15-3223-2022
  • Davidson, M.J., and H.J. Wang. 2002. Strongly advected jet in a coflow. J. Hydraul. Eng. 128 (8):742–52. doi:10.1061/(ASCE)0733-9429(2002)128:8(742)
  • Fushimi, A., K. Saitoh, Y. Fujitani, and N. Takegawa. 2019. Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos. Chem. Phys. 19:6389–99. doi:10.5194/acp-19-6389-2019
  • Hudda, N., and S.A. Fruin. 2016. International airport impacts to air quality: Size and related properties of large increases in ultrafine particle number concentrations. Environ. Sci. Technol. 50:3362–70. doi:10.1021/acs.est.5b05313
  • ICAO, (2019), Volume II, annex 16. https://store.icao.int/en/annex-16-environmental-protection-volume-ii-aircraft-engine-emissions
  • ICAO, Airport Air Quality Manual, (2011), https://www.icao.int/publications/Documents/9889_cons_en.pdf
  • ICAO, Emissions Databank. (2020), https://www.easa.europa.eu/domains/environment/icao-aircraft-engine-emissions-databank
  • Jones, S.M., (2007), An introduction to thermodynamic performance analysis of aircraft gas turbine engine cycles using the numerical propulsion system simulation code, NASA/TM—2007-214690.
  • Kılıç, D., I. El Haddad, B.T. Brem, E. Bruns, C. Bozetti, J. Corbin, L. Durdina, R.-J. Huang, J. Jiang, F. Klein, et al. 2018. Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmos. Chem. Phys. 18 (10):7379–91. doi:10.5194/acp-18-7379-2018.
  • Kurzke, J. 2004. GasTurb 10: A program for gas-turbine performance calculations. ed. Dr.Joachim Kurzke. Dachau, Germany: J. Kurzke.
  • Moore, R.H., M. Shook, A. Beyersdorf, C. Corr, S. Herndon, W.B. Knighton, R. Miake-Lye, K.L. Thornhill, E.L. Winstead, Z. Yu, et al. 2015. Influence of jet fuel composition on aircraft engine emissions: A synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS missions. Energy Fuels 29:2591–600. doi:10.1021/ef502618w
  • Peck, J., Z. Yu, R.C. Miake-Lye, and D.S. Liscinsky, (2015), A volatile particle microphysical simulation model for the evolution of surrogate organic emissions in an aircraft exhaust plume, TAC-4 Proceedings, June 22nd to 25th, 2015, Bad Kohlgrub.
  • SAE. 2011. SAE ARP1179D, Aircraft gas Turbine engine exhaust smoke measurement. Pittsburgh PA: SAE International.
  • Schripp, T., B.E. Anderson, U. Bauder, B. Rauch, J.C. Corbin, G.J. Smallwood, P. Lobo, E.C. Crosbie, M.A. Shook, R.C. Miake-Lye, et al. 2022. Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX. Fuel 325:124764. doi:10.1016/j.fuel.2022.124764
  • Schumann, U., F. Arnold, R. Busen, J. Curtius, B. Kärcher, A. Kiendler, A. Petzold, H. Schlage, F. Schröder, and K.-H. Wohlfrom. 2002. Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7. J.‐Geophys.‐Res 107 (D15):D15. doi:10.1029/2001JD000813,2002
  • Timko, M.T., S.C. Herndon, E.C. Wood, T.B. Onasch, M.J. Northway, J.T. Jayne, M.R. Canagaratna, R.C. Miake-Lye, and W. Berk Knighton. 2010a. Gas turbine engine emissions—part I: Volatile organic compounds and nitrogen oxides. J. Eng. Gas Turbines Power 132 (6):061504–1. doi:10.1115/1.4000131
  • Timko, M.T., T.B. Onasch, M.J. Northway, J.T. Jayne, M.R. Canagaratna, S.C. Herndon, E.C. Wood, R.C. Miake-Lye, and W. Berk Knighton. 2010b. Gas turbine engine emissions— part II: Chemical properties of particulate matter. J. Eng. Gas Turbines Power 132 (6):061505–1. doi:10.1115/1.4000132
  • Ungeheuer, F., D. van Pinxteren, and A.L. Vogel. 2021. Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International airport. Atmos. Chem. Phys. 21:3763–75. doi:10.5194/acp-21-3763-2021
  • Wayson, R.L., G.G. Fleming, and R. Iovinelli. 2009. Methodology to estimate particulate matter emissions from certified commercial aircraft engines. J. Air & Waste Manage. Assoc. 59 (1):91–100. doi:10.3155/1047-3289.59.1.91
  • Wey, C.C., B.E. Anderson, C. Wey, R.C. Miake-Lye, P. Whitefield, and R. Howard. 2007. Overview on the aircraft particle emissions experiment. J. Propuls Power 23 (5):898–905. doi:10.2514/1.26406
  • Wong, H.-W., M. Jun, J. Peck, I.A. Waitz, and R.C. Miake-Lye. 2014. Detailed microphysical modeling of the formation of organic and sulfuric acid coatings on aircraft emitted soot particles in the near field. Aerosol Sci. Technol. 48 (9):981–95. doi:10.1080/02786826.2014.953243
  • Wong, H.-W., M. Jun, J. Peck, I.A. Waitz, and R.C. Miake-Lye. 2015. Roles of organic emissions in the formation of near field aircraft-emitted volatile particulate matter: A kinetic microphysical modeling study. J. Eng. Gas Turbines Power 137 (7):072606–1. doi:10.1115/1.4029366
  • Wong, H.-W., and R.C. Miake-Lye. 2010. Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling. Atmos. Chem. Phys. 10 (7):3261–72. doi:10.5194/acp-10-3261-2010
  • Yu, Z., M.T. Timko, S.C. Herndon, R.C. Miake-Lye, A.J. Beyersdorf, L.D. Ziemba, E.L. Winstead, and B.E. Anderson. 2019. Mode-specific, semi-volatile chemical composition of particulate matter emissions from a commercial gas turbine aircraft engine. Atmos. Environ. 218:116974. doi:10.1016/j.atmosenv.2019.116974