69
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

A case study of surface ozone source contributions in the Seoul metropolitan area using the adjoint of CMAQ

, , , &
Pages 511-530 | Received 04 Oct 2023, Accepted 06 May 2024, Published online: 12 Jul 2024

References

  • Ashfold, M.J., J.A. Pyle, A.D. Robinson, E. Meneguz, M.S.M. Nadzir, S.M. Phang, A.A. Samah, S. Ong, H.E. Ung, L.K. Peng, et al. 2015. Rapid transport of East Asian pollution to the deep tropics. Atmos. Chem. Phys. 15 (6):3565–73. doi: 10.5194/acp-15-3565-2015.
  • Byun, D., and K.L. Schere. 2006. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59 (2):51–77. doi: 10.1115/1.2128636.
  • Choi, J., R.J. Park, H.-M. Lee, S. Lee, D.S. Jo, J.I. Jeong, D.K. Henze, J.-H. Woo, S.-J. Ban, M.-D. Lee, et al. 2019. Impacts of local vs. Trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmos. Environ. 203:196–205. doi: 10.1016/j.atmosenv.2019.02.008.
  • Clappier, A., P., Thunis, M. Beekmann, J.P. Putaud, and A. de Meij. 2021. Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations across Europe: Hints for future measure development. Environment International 156:106699. doi: 10.1016/j.envint.2021.106699.
  • Cohan, D.S., and S.L. Napelenok. 2011. Air quality response modeling for decision support. Atmosphere 2 (3): Article 3. 407–25. doi: 10.3390/atmos2030407.
  • Colombi, N.K., D.J. Jacob, L.H. Yang, S. Zhai, V. Shah, S.K. Grange, R.M. Yantosca, S. Kim, and H. Liao. 2022. Why is ozone in South Korea and the Seoul Metropolitan Area so high and increasing? EGUsphere 1–21. doi: 10.5194/egusphere-2022-1366.
  • de Vries, W. 2021. Impacts of nitrogen emissions on ecosystems and human health: A mini review. Curr. Opin. Environ. Sci. Health 21:100249. doi: 10.1016/j.coesh.2021.100249.
  • Du, X., W. Tang, Z. Zhang, Y. Li, Y. Yu, Z. Xiao, and F. Meng. 2022. Sensitivity modeling of ozone and its precursors over the Chengdu metropolitan area. Atmos. Environ. 277:119071. doi: 10.1016/j.atmosenv.2022.119071.
  • Dunker, A.M., B. Koo, and G. Yarwood. 2016. Ozone sensitivity to isoprene chemistry and emissions and anthropogenic emissions in central California. Atmos. Environ. 145:326–37. doi: 10.1016/j.atmosenv.2016.09.048.
  • Dunker, A.M., G. Yarwood, J.P. Ortmann, and G.M. Wilson. 2002. Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model. Environ. Sci. Technol. 36 (13):2953–64. doi: 10.1021/es011418f.
  • Guenther, A., X. Jiang, T. Shah, L. Huang, S. Kemball-Cook, and G. Yarwood. 2020. Model of emissions of gases and aerosol from nature version 3 (MEGAN3) for estimating biogenic emissions. In Air pollution modeling and its application XXVI, ed. C. Mensink, W. Gong, and A. Hakami, 187–92. Springer, Cham: Springer International Publishing. doi: 10.1007/978-3-030-22055-6_29.
  • Hakami, A., M.S. Bergin, and A.G. Russell. 2004. Ozone formation potential of organic compounds in the Eastern United States: A comparison of episodes, inventories, and domains. Environ. Sci. Technol. 38 (24):6748–59. doi: 10.1021/es035471a.
  • Hakami, A., D.K. Henze, J.H. Seinfeld, K. Singh, A. Sandu, S. Kim, Byun, Q. Li. 2007. The adjoint of CMAQ. Environ. Sci. Technol. 41 (22):7807–17. doi: 10.1021/es070944p.
  • Henze, D.K., A. Hakami, and J.H. Seinfeld. 2007. Development of the adjoint of GEOS-Chem. Atmos. Chem. Phys. 7 (9):2413–33. doi: 10.5194/acp-7-2413-2007.
  • Huang, L., J. Sun, L. Jin, N.J. Brown, and J. Hu. 2021. Strategies to reduce PM2.5 and O3 together during late summer and early fall in San Joaquin Valley, California. Atmos. Res. 258:105633. doi: 10.1016/j.atmosres.2021.105633.
  • Itahashi, S., I. Uno, and S. Kim. 2012. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM. Environ. Sci. Technol. 46 (12):6733–41. doi: 10.1021/es300887w.
  • Ivey, C.E., H.A. Holmes, Y. Hu, J.A. Mulholland, and A.G. Russell. 2016. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter. Front. Environ. Sci. Eng. 10 (5):14. doi: 10.1007/s11783-016-0866-6.
  • Jeon, W.-B., S.-H. Lee, H. Lee, C. Park, D.-H. Kim, and S.-Y. Park. 2014. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 89:10–21. doi: 10.1016/j.atmosenv.2014.02.005.
  • Jonson, J.E., J. Borken-Kleefeld, D. Simpson, A. Nyíri, M. Posch, and C. Heyes 2017. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 12 (9):094017. doi: 10.1088/1748-9326/aa8850.
  • Jung, J., Y. Choi, A.H. Souri, S. Mousavinezhad, A. Sayeed, and K. Lee. 2022. The impact of springtime-transported air pollutants on local air quality with satellite-constrained NOx emission adjustments over East Asia. J. Geophys. Res. 127 (5):e2021JD035251. doi: 10.1029/2021JD035251.
  • Jung, J., Y. Choi, D.C. Wong, D. Nelson, and S. Lee. 2021. Role of sea fog over the Yellow sea on air quality with the direct effect of aerosols. J. Geophys. Res. 126 (5):e2020JD033498. doi: 10.1029/2020JD033498.
  • Kim, H., J. Gil, M. Lee, J. Jung, A. Whitehill, J. Szykman, G. Lee, D.-S. Kim, S. Cho, J.-Y. Ahn, et al. 2020. Factors controlling surface ozone in the Seoul Metropolitan Area during the KORUS-AQ campaign. Elem. Sci. Anth. 8:46. doi: 10.1525/elementa.444.
  • Kim, J., J. Lee, J.-S. Han, J. Choi, D.-G. Kim, J. Park, and G. Lee. 2021. Long-term assessment of ozone nonattainment changes in South Korea compared to US, and EU ozone guidelines. Asian J. Atmos. Environ. 15 (4):20–32. doi: 10.5572/ajae.2021.098.
  • Kim, S., D.W. Byun, and D. Cohan. 2009. Contributions of inter- and intra-state emissions to ozone over Dallas-Fort Worth, Texas. Civ. Eng. Environ. Syst. 26 (1):103–16. doi: 10.1080/10286600802005364.
  • Kwok, R.H.F., K.R. Baker, S.L. Napelenok, and G.S. Tonnesen. 2015. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment. Geosci. Model Dev. 8 (1):99–114. doi: 10.5194/gmd-8-99-2015.
  • Lee, H.-J., H.-Y. Jo, S.-Y. Park, Y.-J. Jo, W. Jeon, J.-Y. Ahn, and C.-H. Kim. 2019. A case study of the transport/transformation of air pollutants over the Yellow Sea during the MAPS 2015 campaign. J. Geophys. Res. 124 (12):6532–53. doi: 10.1029/2018JD029751.
  • Lee, H.-M., and R.J. Park. 2022. Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environ. Pollut. 308:119645. doi: 10.1016/j.envpol.2022.119645.
  • Lee, H.-M., R.J. Park, D.K. Henze, S. Lee, C. Shim, H.-J. Shin, K.-J. Moon, and J.-H. Woo. 2017. PM2.5 source attribution for Seoul in May from 2009 to 2013 using GEOS-Chem and its adjoint model. Environ. Pollut. 221:377–84. doi: 10.1016/j.envpol.2016.11.088.
  • Lee, S., C.-H. Ho, Y.G. Lee, H.-J. Choi, and C.-K. Song. 2013. Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October 16–20, 2008. Atmos. Environ. 77:430–39. doi: 10.1016/j.atmosenv.2013.05.006.
  • Lee, S., J. Kim, M. Choi, J. Hong, H. Lim, T.F. Eck, B.N. Holben, J.-Y. Ahn, J. Kim, and J.-H. Koo. 2019. Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign. Atmos. Environ. 204:53–67. doi: 10.1016/j.atmosenv.2019.02.020.
  • Lei, X., H. Cheng, J. Peng, H. Jiang, X. Lyu, P. Zeng, Z. Wang, and H. Guo. 2021. Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. Atmos. Environ. 246:118093. doi: 10.1016/j.atmosenv.2020.118093.
  • Mauzerall, D.L., B. Sultan, N. Kim, and D.F. Bradford. 2005. NOx emissions from large point sources: Variability in ozone production, resulting health damages and economic costs. Atmos. Environ. 39 (16):2851–66. doi: 10.1016/j.atmosenv.2004.12.041.
  • McDuffie, E.E., R.V. Martin, J.V. Spadaro, R. Burnett, S.J. Smith, P. O’Rourke, M.S. Hammer, A. van Donkelaar, L. Bindle, V. Shah, et al. 2021. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12 (1): Article 1. 10.1038/s41467-021-23853-y.
  • Momeni, M., Y. Choi, A. Kashfi Yeganeh, A. Pouyaei, J. Jung, J. Park, M.W. Shephard, E. Dammers, and K.E. Cady-Pereira. 2024. Constraining East Asia ammonia emissions through satellite observations and iterative finite difference mass balance (iFDMB) and investigating its impact on inorganic fine particulate matter. Environ. Int. 184:108473. doi: 10.1016/j.envint.2024.108473.
  • Mousavinezhad, S., Y. Choi, A. Pouyaei, M. Ghahremanloo, and D.L. Nelson. 2021. A comprehensive investigation of surface ozone pollution in China, 2015–2019: Separating the contributions from meteorology and precursor emissions. Atmos. Res. 257:105599. doi: 10.1016/j.atmosres.2021.105599.
  • Napelenok, S.L., D.S. Cohan, Y. Hu, and A.G. Russell. 2006. Decoupled direct 3D sensitivity analysis for particulate matter (DDM-3D/PM). Atmos. Environ. 40 (32):6112–21. doi: 10.1016/j.atmosenv.2006.05.039.
  • Oh, I.-B., Y.-K. Kim, M.-K. Hwang, C.-H. Kim, S. Kim, and S.-K. Song. 2010. Elevated ozone layers over the Seoul metropolitan region in Korea: Evidence for long-range ozone transport from Eastern China and its contribution to surface concentrations. J. Appl. Meteorol. Clim. 49 (2):203–20. doi: 10.1175/2009JAMC2213.1.
  • Pappin, A.J., A. Hakami, P. Blagden, M. Nasari, M. Szyszkowicz, and R.T. Burnett. 2016. Health benefits of reducing NOx emissions in the presence of epidemiological and atmospheric nonlinearities. Environ. Res. Lett. 11 (6):064015. doi: 10.1088/1748-9326/11/6/064015.
  • Park, J., J. Jung, Y. Choi, H. Lim, M. Kim, K. Lee, Y. Lee, and J. Kim. 2023. Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: The Geostationary Environment Monitoring Spectrometer (GEMS) data fusion product and its proxies. EGUsphere 1–33.
  • Park, J., J. Jung, Y. Choi, S. Mousavinezhad, and A. Pouyaei. 2022. The sensitivities of ozone and PM2.5 concentrations to the satellite-derived leaf area index over East Asia and its neighboring seas in the WRF-CMAQ modeling system. Environ. Pollut. 306:119419. doi: 10.1016/j.envpol.2022.119419.
  • Park, S.-Y., S.-H. Lee, H.W. Lee, and D.-H. Kim. 2013. Numerical study on the ozone formation sensitivity of precursors using adjoint model around the South-eastern Area of the Korean Peninsula. J. Korean Earth Sci. Soc. 34 (7):669–80. doi: 10.5467/JKESS.2013.34.7.669.
  • Park, S.-Y., C. Park, J.-W. Yoo, S.-H. Lee, and H.W. Lee. 2018. Adjoint sensitivity of inland ozone to its precursors and meteorological and chemical influences. Atmos. Environ. 192:104–15. doi: 10.1016/j.atmosenv.2018.08.006.
  • Peterson, D.A., E.J. Hyer, S.-O. Han, J.H. Crawford, R.J. Park, R. Holz, R.E. Kuehn, E. Eloranta, C. Knote, C.E. Jordan, et al. 2019. Meteorology influencing springtime air quality, pollution transport, and visibility in Korea. Elem. Sci. Anth. 7:57. doi: 10.1525/elementa.395.
  • Sandu, A., D.N. Daescu, G.R. Carmichael, and T. Chai. 2005. Adjoint sensitivity analysis of regional air quality models. J. Comput. Phys. 204 (1):222–52. doi: 10.1016/j.jcp.2004.10.011.
  • Silva, R.A., J.J. West, Y. Zhang, S.C. Anenberg, J.-F. Lamarque, D.T. Shindell, W.J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, et al. 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8 (3):034005. doi: 10.1088/1748-9326/8/3/034005.
  • Skamarock, W., J. Klemp, J. Dudhia, D. Gill, D. Barker, W. Wang, X.-Y. Huang, and M. Duda. 2008. A description of the advanced research WRF version 3 (p. 1002 KB) [Application/pdf]. UCAR/NCAR. 10.5065/D68S4MVH.
  • Stein, A.F., R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96 (12):2059–77. doi: 10.1175/BAMS-D-14-00110.1.
  • Thunis, P., A. Clappier, M. Beekmann, J.P. Putaud, C. Cuvelier, J. Madrazo, and A. de Meij. 2021. Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): Consequences for air quality plans. Atmos. Chem. Phys. 21 (12):9309–27. doi: 10.5194/acp-21-9309-2021.
  • Travis, K.R., J.H. Crawford, G. Chen, C.E. Jordan, B.A. Nault, H. Kim, J.L. Jimenez, P. Campuzano-Jost, J.E. Dibb, J.-H. Woo, et al. 2022. Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ. Atmos. Chem. Phys. 22 (12):7933–58 doi:10.5194/acp-22-7933-2022.
  • Turner, M.D., D.K. Henze, A. Hakami, S. Zhao, J. Resler, G.R. Carmichael, C.O. Stanier, J. Baek, A. Sandu, A.G. Russell, et al. 2015. Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment. Environ. Sci. Technol. 49 (7):4362–71. doi: 10.1021/es505968b.
  • Wang, C., X. An, D. Zhao, Z. Sun, L. Jiang, J. Li, and Q. Hou. 2022. Development of GRAPES-CUACE adjoint model version 2.0 and its application in sensitivity analysis of ozone pollution in north China. Sci. Total Environ. 826:153879. doi: 10.1016/j.scitotenv.2022.153879.
  • Wang, X., T.-M. Fu, L. Zhang, H. Cao, Q. Zhang, H. Ma, L. Shen, M.J. Evans, P.D. Ivatt, and X. Lu. 2021. Sensitivities of Ozone Air Pollution in the Beijing–Tianjin–Hebei Area to Local and Upwind Precursor Emissions Using Adjoint Modeling. Environ. Sci. Technol. 55 (9):5752–62. doi: 10.1021/acs.est.1c00131.
  • Wang, Q., K. Luo, J. Fan, X. Gao, and K. Cen. 2019. Spatial distribution and multiscale transport characteristics of PM2.5 in China. Aerosol Air Qual. Res. 19 (9):1993–2007. doi: 10.4209/aaqr.2019.04.0202.
  • Wang, M.Y., S.H.L. Yim, G.H. Dong, K.F. Ho, and D.C. Wong. 2020. Mapping ozone source-receptor relationship and apportioning the health impact in the Pearl River Delta region using adjoint sensitivity analysis. Atmos. Environ. 222:117026. doi: 10.1016/j.atmosenv.2019.117026.
  • Wang, M.Y., S.H.L. Yim, D.C. Wong, and K.F. Ho. 2019. Source contributions of surface ozone in China using an adjoint sensitivity analysis. Sci. Total Environ 662:385–92. doi: 10.1016/j.scitotenv.2019.01.116.
  • Woo, J.-H., Y. Kim, H.-K. Kim, K.-C. Choi, J.-H. Eum, J.-B. Lee, J.-H. Lim, J. Kim, and M. Seong. 2020. Development of the CREATE inventory in support of integrated climate and air quality modeling for Asia. Sustain.(Switzerland) 12 (19), Article 19. 7930. doi: 10.3390/su12197930.
  • Yeo, M.J., and Y.P. Kim. 2021. Long-term trends of surface ozone in Korea. J. Cleaner Prod. 294:125352. doi: 10.1016/j.jclepro.2020.125352.
  • Zhang, L., L. Liu, Y. Zhao, S. Gong, X. Zhang, D.K. Henze, S.L. Capps, T.-M. Fu, Q. Zhang, and Y. Wang. 2015. Source attribution of particulate matter pollution over North China with the adjoint method. Environ. Res. Lett. 10 (8):084011. doi: 10.1088/1748-9326/10/8/084011.
  • Zhao, S., M.G. Russell, A. Hakami, S.L. Capps, M.D. Turner, D.K. Henze, P.B. Percell, J. Resler, H. Shen, A.G. Russell, et al. 2020. A multiphase CMAQ version 5.0 adjoint. Geosci. Model Dev. 13 (7):2925–44. doi: 10.5194/gmd-13-2925-2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.