858
Views
0
CrossRef citations to date
0
Altmetric
Notebook Paper

Measuring short-chain per- and polyfluoroalkyl substances in Central New Jersey air using chemical ionization mass spectrometry

ORCID Icon &
Pages 531-539 | Received 02 Apr 2024, Accepted 31 May 2024, Published online: 09 Jul 2024

References

  • Beekman, M., P. Zweers, A. Muller, W. De Vries, P. Janssen, and M. Zeilmaker. 2016. Evaluation of substances used in the GenX technology by Chemours, Dordrecht. Bilthoven, Utrecht: National Institute for Public Health and the Environment.
  • Bertram, T., J. Thornton, and T. Riedel. 2009. An experimental technique for the direct measurement of N2O5 reactivity on ambient particles. Atmos. Meas. Tech. 2 (1):689–723. doi:10.5194/amt-2-231-2009.
  • Bertram, T. H., J. R. Kimmel, T. A. Crisp, O. S. Ryder, R. L. N. Yatavelli, J. A. Thornton, M. J. Cubison, M. Gonin, and D. R. Worsnop. 2011. A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmos. Meas. Tech. 4:1471–79. doi:10.5194/amt-4-1471-2011.
  • Bowers, B. B., J. A. Thornton, and R. C. Sullivan. 2023. Evaluation of iodide chemical ionization mass spectrometry for gas and aerosol-phase per-and polyfluoroalkyl substances (PFAS) analysis. Environ. Sci. Process Impacts 25 (2):277–87. doi:10.1039/D2EM00275B.
  • Colomer, I., A. E. Chamberlain, M. B. Haughey, and T. J. Donohoe. 2017. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1 (11):0088. doi:10.1038/s41570-017-0088.
  • D’Ambro, E. L., H. O. T. Pye, J. O. Bash, J. Bowyer, C. Allen, C. Efstathiou, R. C. Gilliam, L. Reynolds, K. Talgo, and B. N. Murphy. 2021. Characterizing the air emissions, transport, and deposition of per-and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ. Sci. Technol. 55 (2):862–70. doi:10.1021/acs.est.0c06580.
  • De Silva, A. O., J. M. Armitage, T. A. Bruton, C. Dassuncao, W. Heiger-Bernays, X. C. Hu, A. Kärrman, B. Kelly, C. Ng, A. Robuck. 2021. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding. Environ. Toxicol. Chem. 40 (3):631–57. doi:10.1002/etc.4935.
  • Dreveton, A. 2016. Overview of the fluorochemicals industrial sectors. Procedia Eng. 138:240–47. doi:10.1016/j.proeng.2016.02.081.
  • Ellis, D. A., M. L. Hanson, P. K. Sibley, T. Shahid, N. A. Fineberg, K. R. Solomon, D. C. G. Muir, and S. A Mabury. 2001. The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere. 42 (3):309–18. doi:10.1016/S0045-6535(00)00066-7.
  • Folkerson, A. P., S. R. Schneider, J. P. Abbatt, and S. A. Mabury. 2023. Avoiding regrettable replacements: Can the introduction of novel functional groups move PFAS from recalcitrant to reactive? Environ. Sci. Technol. 57 (44):17032–41. doi:10.1021/acs.est.3c06232.
  • Glüge, J., M. Scheringer, I. T. Cousins, J. C. DeWitt, G. Goldenman, D. Herzke, R. Lohmann, C. A. Ng, X. Trier, Z. Wang. 2020. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process Impacts. 22 (12):2345–73. doi:10.1039/D0EM00291G.
  • Godin, P. J., K. Le Bris, and K. Strong. 2017. Conformational analysis and global warming potentials of 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol from absorption spectroscopy. J. Quant Spectrosc Rad. Transfer 203 (203):522–29. doi:10.1016/j.jqsrt.2017.04.031.
  • Heinritzi, M., M. Simon, G. Steiner, A. C. Wagner, A. Kürten, A. Hansel, and J. Curtius. 2016. Characterization of the mass-dependent transmission efficiency of a CIMS. Atmos. Meas. Tech. 9 (4):1449–60. doi:10.5194/amt-9-1449-2016.
  • Iyer, S., F. Lopez-Hilfiker, B. H. Lee, J. A. Thornton, and T. Kurtén. 2016. Modeling the detection of organic and inorganic compounds using iodide-based chemical ionization. J. Phys. Chem. A 120 (4):576–87. doi:10.1021/acs.jpca.5b09837.
  • Joudan, S., A. O. De Silva, and C. J. Young. 2021. Insufficient evidence for the existence of natural trifluoroacetic acid. Environ. Sci. Process Impacts 23 (11):1641–49. doi:10.1039/D1EM00306B.
  • Lee, B. H., F. D. Lopez-Hilfiker, C. Mohr, T. Kurtén, D. R. Worsnop, and J. A. Thornton. 2014. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: Application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48 (11):6309–17. doi:10.1021/es500362a.
  • Lee, B. H., F. D. Lopez-Hilfiker, P. R. Veres, E. E. McDuffie, D. L. Fibiger, T. L. Sparks, C. J. Ebben, J. R. Green, J. C. Schroder, P. Campuzano-Jost, et al. 2018. Flight deployment of a high-resolution time-of-flight chemical ionization mass spectrometer: Observations of reactive halogen and nitrogen oxide species. J. Geophys. Res. Atmos. 123 (14):7670–86. doi:10.1029/2017JD028082.
  • Lerner, S. 2016. New teflon toxin causes cancer in lab animals. The Intercept. Accessed January 4, 2024. https://theintercept.com/2016/03/03/new-teflon-toxin-causes-cancer-in-lab-animals/
  • Liu, L., F. Yu, K. Tu, Z. Yang, and X. Zhang. 2021. Influence of atmospheric conditions on the role of trifluoroacetic acid in atmospheric sulfuric acid–dimethylamine nucleation. Atmos Chem. Phys. 21 (8):6221–30. doi:10.5194/acp-21-6221-2021.
  • Lopez-Hilfiker, F. D., S. Iyer, C. Mohr, B. H. Lee, E. L. D’Ambro, T. Kurtén, and J. A. Thornton. 2016. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmos. Meas. Tech. 9 (4):1505–12. doi:10.5194/amt-9-1505-2016.
  • Mattila, J. M., J. D. Krug, W. R. Roberson, R. P. Burnette, S. McDonald, L. Virtaranta, J. H. Offenberg, and W. P. Linak. 2024. Characterizing volatile emissions and combustion byproducts from aqueous film-forming foams using online chemical ionization mass spectrometry. Environ. Sci. Technol. 58 (8):3942–52. doi:10.1021/acs.est.1023c09255.
  • Mattila, J. M., E. Y. Li, and J. H. Offenberg. 2023. Tubing material considerably affects measurement delays of gas-phase oxygenated per-and polyfluoroalkyl substances. J. Air Waste Manage Assoc. 73 (5):335–44. doi:10.1080/10962247.2023.2174612.
  • Nakayama, S. F., M. Yoshikane, Y. Onoda, Y. Nishihama, M. Iwai-Shimada, M. Takagi, Y. Kobayashi, and T. Isobe. 2019. Worldwide trends in tracing poly-and perfluoroalkyl substances (PFAS) in the environment. Trends Anal. Chem. 121:115410. doi:10.1016/j.trac.2019.02.011.
  • Paulot, F., J. D. Crounse, H. G. Kjaergaard, A. Kürten, J. M. St. Clair, J. H. Seinfeld, and P. O. Wennberg. 2009. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325 (5941):730–33. doi:10.1126/science.1172910.
  • Richey, D., C. Driscoll, and G. Likens. 1997. Soil retention of trifluoroacetate. Environ. Sci. Technol. 31 (6):1723–27. doi:10.1021/es960649x.
  • Riedel, T. P., J. R. Lang, M. J. Strynar, A. B. Lindstrom, and J. H. Offenberg. 2019. Gas-phase detection of fluorotelomer alcohols and other oxygenated per-and polyfluoroalkyl substances by chemical ionization mass spectrometry. Environ. Sci. Technol. Lett. 6 (5):289–93. doi:10.1021/acs.estlett.9b00196.
  • Riedel, T. P., M. A. G. Wallace, E. P. Shields, J. V. Ryan, C. W. Lee, and W. P. Linak. 2021. Low temperature thermal treatment of gas-phase fluorotelomer alcohols by calcium oxide. Chemosphere. 272 (12):129859. doi:10.1016/j.chemosphere.2021.129859.
  • Washington, J. W., C. G. Rosal, J. P. McCord, M. J. Strynar, A. B. Lindstrom, E. L. Bergman, S. M. Goodrow, H. K. Tadesse, A. N. Pilant, B. J. Washington, et al. 2020. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science. 368 (6495):1103–07. doi:10.1126/science.aba7127.
  • Wickersham, L. C., J. M. Mattila, J. D. Krug, S. R. Jackson, M. A. G. Wallace, E. P. Shields, H. Halliday, E. Y. Li, H. K. Liberatore, S. Farrior, et al. 2023. Characterization of PFAS air emissions from thermal application of fluoropolymer dispersions on fabrics. J. Air Waste Manage Assoc. 73 (7):533–52. doi:10.1080/10962247.2023.2192009.
  • Xia, H., W. Jing, Z. Zi-Han, B.-Y. Zhang, and J.-B. Zhang. 2013. Determination of gaseous and particulate trifluoroacetic acid in atmosphere environmental samples by gas chromatography-mass spectrometry. Chin. J. Anal. Chem. 41 (8):1140–45. doi:10.1016/S1872-2040(13)60676-3.
  • Zhang, B., Z. Zhai, and J. Zhang. 2018. Distribution of trifluoroacetic acid in gas and particulate phases in Beijing from 2013 to 2016. Sci. Total Environ. 634:471–77. doi:10.1016/j.scitotenv.2018.03.384.