529
Views
0
CrossRef citations to date
0
Altmetric
Molecular and Cellular Biology

Degradation of CDK9 by Ubiquitin E3 Ligase STUB1 Regulates P-TEFb Level and Its Functions for Global Target Gene Expression within Mammalian Cells

, , , & ORCID Icon
Pages 451-471 | Received 15 Apr 2023, Accepted 18 Jul 2023, Published online: 11 Aug 2023

REFERENCES

  • Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194563. doi:10.1016/j.bbagrm.2020.194563. PMID: 32348849.
  • Bres V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol. 2008;20:334–340. doi:10.1016/j.ceb.2008.04.008.
  • Ghosh K, Tang M, Kumari N, Nandy A, Basu S, Mall DP, Rai K, Biswas D. Positive regulation of transcription by human ZMYND8 through Its association with P-TEFb complex. Cell Rep. 2018;24:2141–2154 e6. doi:10.1016/j.celrep.2018.07.064. PMID: 30134174.
  • Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998;12:755–762. doi:10.1101/gad.12.5.755. PMID: 9499409.
  • Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol. 2000;20:2629–2634. doi:10.1128/MCB.20.8.2629-2634.2000. PMID: 10733565.
  • Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 2001;414:317–322. doi:10.1038/35104575. PMID: 11713532.
  • Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell. 2003;12:971–982.
  • Sessler RJ, Noy N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol Cell. 2005;18:343–353. doi:10.1016/j.molcel.2005.03.026. PMID: 15866176.
  • Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005;19:535–545. doi:10.1016/j.molcel.2005.06.029. PMID: 16109377.
  • Biswas D, Milne TA, Basrur V, Kim J, Elenitoba-Johnson KS, Allis CD, Roeder RG. Function of leukemogenic mixed lineage leukemia 1 (MLL) fusion proteins through distinct partner protein complexes. Proc Natl Acad Sci U S A. 2011;108:15751–15756. doi:10.1073/pnas.1111498108. PMID: 21896721.
  • He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M, Alber T, Benkirane M, Zhou Q. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A. 2011;108:E636–E645. doi:10.1073/pnas.1107107108. PMID: 21873227.
  • Mayer A, Landry HM, Churchman LS. Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol. 2017;46:72–80. doi:10.1016/j.ceb.2017.03.002. PMID: 28363125.
  • Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbe JC, Lorca T, Nakayama Ki K, Benkirane M. Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome. Mol Cell Biol. 2001;21:7956–7970. doi:10.1128/MCB.21.23.7956-7970.2001. PMID: 11689688.
  • Barboric M, Zhang F, Besenicar M, Plemenitas A, Peterlin BM. Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation. J Virol. 2005;79:11135–11141. doi:10.1128/JVI.79.17.11135-11141.2005. PMID: 16103164.
  • Zhang S, Hu ZW, Mao CY, Shi CH, Xu YM. CHIP as a therapeutic target for neurological diseases. Cell Death Dis. 2020;11:727. doi:10.1038/s41419-020-02953-5. PMID: 32908122.
  • Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol. 2004;24:856–864. doi:10.1128/MCB.24.2.856-864.2004. PMID: 14701756.
  • Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A. 2002;99:12847–12852. doi:10.1073/pnas.202365899. PMID: 12239347.
  • Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem. 2004;279:4869–4876. doi:10.1074/jbc.M305838200. PMID: 14612456.
  • Urushitani M, Kurisu J, Tateno M, Hatakeyama S, Nakayama K, Kato S, Takahashi R. CHIP promotes proteasomal degradation of familial ALS-linked mutant SOD1 by ubiquitinating Hsp/Hsc70. J Neurochem. 2004;90:231–244. doi:10.1111/j.1471-4159.2004.02486.x. PMID: 15198682.
  • Huang Z, Nie L, Xu M, Sun XH. Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination. Mol Cell Biol. 2004;24:8951–8962. doi:10.1128/MCB.24.20.8951-8962.2004. PMID: 15456869.
  • Peng HM, Morishima Y, Jenkins GJ, Dunbar AY, Lau M, Patterson C, Pratt WB, Osawa Y. Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J Biol Chem. 2004;279:52970–52977. doi:10.1074/jbc.M406926200. PMID: 15466472.
  • Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem. 2005;280:23727–23734. doi:10.1074/jbc.M503326200. PMID: 15845543.
  • Hwang JR, Zhang C, Patterson C. C-terminus of heat shock protein 70-interacting protein facilitates degradation of apoptosis signal-regulating kinase 1 and inhibits apoptosis signal-regulating kinase 1-dependent apoptosis. Cell Stress Chaperones. 2005;10:147–156. doi:10.1379/csc-90r.1. PMID: 16038411.
  • Kim SA, Yoon JH, Kim DK, Kim SG, Ahn SG. CHIP interacts with heat shock factor 1 during heat stress. FEBS Lett. 2005;579:6559–6563. doi:10.1016/j.febslet.2005.10.043. PMID: 16293251.
  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. embo J. 2003;22:5446–5458. doi:10.1093/emboj/cdg529. PMID: 14532117.
  • Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature. 2006;440:551–555. doi:10.1038/nature04600. PMID: 16554822.
  • Zhan S, Wang T, Ge W. Multiple functions of the E3 ubiquitin ligase CHIP in immunity. Int Rev Immunol. 2017;36:300–312. doi:10.1080/08830185.2017.1309528. PMID: 28574736.
  • Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, DiPetrillo TA, Wazer DE, Band V, Band H. ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem. 2003;278:13829–13837. doi:10.1074/jbc.M209640200. PMID: 12574167.
  • Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-Ma K, Ito I, Yamaguchi Y, Ohie SH, Kobayashi Y, Seino Y, et al. The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol. 2009;11:312–319. doi:10.1038/ncb1839. PMID: 19198599.
  • Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, He S, Qiang F, Li A, Shu Y, et al. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut. 2013;62:496–508. doi:10.1136/gutjnl-2011-301522. PMID: 22535373.
  • Tang DE, Dai Y, Lin LW, Xu Y, Liu DZ, Hong XP, Jiang HW, Xu SH. STUB1 suppresseses tumorigenesis and chemoresistance through antagonizing YAP1 signaling. Cancer Sci. 2019;110:3145–3156. doi:10.1111/cas.14166. PMID: 31393050.
  • Xu S, Fan L, Jeon HY, Zhang F, Cui X, Mickle MB, Peng G, Hussain A, Fazli L, Gleave ME, et al. p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by ubiquitin ligase STUB1 and enhances its activity in prostate cancer. Cancer Res. 2020;80:3074–3087. doi:10.1158/0008-5472.CAN-20-0233. PMID: 32522824.
  • Sarkar S, Brautigan DL, Parsons SJ, Larner JM. Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. 2014;33:26–33. doi:10.1038/onc.2012.561. PMID: 23246967.
  • Mall DP, Basu S, Ghosh K, Kumari N, Lahiri A, Paul S, Biswas D. Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol. 2022;42:e0034421. doi:10.1128/MCB.00344-21. PMID: 34780285.
  • Basu S, Barad M, Yadav D, Nandy A, Mukherjee B, Sarkar J, Chakrabarti P, Mukhopadhyay S, Biswas D. DBC1, p300, HDAC3, and Siah1 coordinately regulate ELL stability and function for expression of its target genes. Proc Natl Acad Sci U S A. 2020;117:6509–6520. doi:10.1073/pnas.1912375117. PMID: 32152128.
  • He N, Liu M, Hsu J, Xue Y, Chou S, Burlingame A, Krogan NJ, Alber T, Zhou Q. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell. 2010;38:428–438. doi:10.1016/j.molcel.2010.04.013. PMID: 20471948.
  • Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics. 2012;11:148–159. doi:10.1074/mcp.M111.016857. PMID: 22505724.
  • Udeshi ND, Mertins P, Svinkina T, Carr SA. Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc. 2013;8:1950–1960. doi:10.1038/nprot.2013.120. PMID: 24051958.
  • Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, Carr SA. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics. 2013;12:825–831. doi:10.1074/mcp.O112.027094. PMID: 23266961.
  • Somesh BP, Reid J, Liu WF, Sogaard TM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell. 2005;121:913–923. doi:10.1016/j.cell.2005.04.010. PMID: 15960978.
  • Yadav D, Ghosh K, Basu S, Roeder RG, Biswas D. Multivalent role of human TFIID in recruiting elongation components at the promoter-proximal region for transcriptional control. Cell Rep. 2019;26:1303–1317 e7. doi:10.1016/j.celrep.2019.01.012. PMID: 30699356.
  • Kumari N, Hassan MA, Lu X, Roeder RG, Biswas D. AFF1 acetylation by p300 temporally inhibits transcription during genotoxic stress response. Proc Natl Acad Sci USA. 2019;116:22140–22151. doi:10.1073/pnas.1907097116. PMID: 31611376.
  • Basu S, Nandy A, Barad MK, Pal S, Biswas D. Negative feedback loop mechanism between EAF1/2 and DBC1 in regulating ELL stability and functions. Mol Cell Biol. 2022;42:e0015122. doi:10.1128/mcb.00151-22. PMID: 36036574.
  • Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA, Dephoure N, Zhou C, Koren I, Gygi SP, Elledge SJ. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol Cell. 2015;59:867–881. doi:10.1016/j.molcel.2015.05.006. PMID: 26051181.
  • Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics. 2015;14:2429–2440. doi:10.1074/mcp.O114.047555. PMID: 25953088.
  • Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F, Moll UM. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 2011;9:577–588. doi:10.1158/1541-7786.MCR-10-0534. PMID: 21478269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.