897
Views
0
CrossRef citations to date
0
Altmetric
Research Article

How numbers influence students when solving linear equations

ORCID Icon
Received 21 Feb 2023, Accepted 31 Jan 2024, Published online: 21 Feb 2024

References

  • Andrews, P., & Öhman, S. (2019). Swedish upper secondary students’ understanding of linear equations: An enigma? Acta Didactica Napocensia, 12(1), 117–129. https://doi.org/10.24193/adn.12.1.8
  • Asquith, P., Stephens, A. D., Knuth, E. J., & Alibali, M. W. (2007). Middle school mathematics teachers’ knowledge of students’ understanding of core algebraic concepts: Equal sign and variable. Mathematical Thinking and Learning, 9(3), 249–272. https://doi.org/10.1080/10986060701360910
  • Balacheff, N. (2001). Symbolic arithmetic vs algebra the core of a didactical dilemma. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 249–260). Kluwer.
  • Björklund, C., Ekdahl, A.-L., Kullberg, A., & Reis, M. (2022). Preschoolers’ ways of experiencing numbers. LUMAT: International Journal of Math, Science and Technology Education, 10(2), 84–110. https://doi.org/10.31129/LUMAT.10.2.1685
  • Björklund, C., Marton, F., & Kullberg, A. (2021). What is to be learnt? Critical aspects of elementary arithmetic skills. Educational Studies in Mathematics, 107(2), 261–284. https://doi.org/10.1007/s10649-021-10045-0
  • Boero, P. (2001). Transformation and anticipation as key processes in algebraic problem solving. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 191–207). Kluwer.
  • Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. The Journal of Mathematical Behavior, 32(3), 613–632. https://doi.org/10.1016/j.jmathb.2013.07.002
  • Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics (Vol. 2, pp. 669–705). Information Age Pub.
  • Christou, K. P., Kyrvei, D. I., & Vamvakoussi, X. (2022). Interpreting literal symbols in algebra under the effects of the natural number bias. Mathematical Thinking and Learning, 1–14. https://doi.org/10.1080/10986065.2022.2128276
  • Christou, K. P., & Vosniadou, S. (2012). What kinds of numbers do students assign to literal symbols? Aspects of the transition from arithmetic to algebra. Mathematical Thinking and Learning, 14(1), 1–27. https://doi.org/10.1080/10986065.2012.625074
  • Dettori, G., Garuti, R., & Lemut, E. (2001). From arithmetic to algebraic thinking by using a spreadsheet. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 191–207). Kluwer.
  • Drijvers, P., Goddijn, A., & Kindt, M. (2011). Algebra education: Exploring topics and themes. In P. Drijvers (Ed.), Secondary algebra education (pp. 5–26). SensePublishers. https://doi.org/10.1007/978-94-6091-334-1_1
  • English, L. D., & Sharry, P. V. (1996). Analogical reasoning and the development of algebraic abstraction. Educational Studies in Mathematics, 30(2), 135–157. https://doi.org/10.1007/BF00302627
  • Gallardo, A. (2002). The extension of the natural-number domain to the integers in the transition from arithmetic to algebra. Educational Studies in Mathematics, 49(2), 171–192. https://doi.org/10.1023/A:1016210906658
  • Greer, B. (2006). Designing for conceptual change. In J. Novotná, H. Moraová, M. Krátvá, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Prague, Czech Republic (Vol. 1, pp. 175–178). PME.
  • Gurwitsch, A. (1964). The field of consciousness. Duquesne University Press.
  • Hackenberg, A. J., & Lee, M. Y. (2015). Relationships between students’ fractional knowledge and equation writing. Journal for Research in Mathematics Education, 46(2), 196–243. https://doi.org/10.5951/jresematheduc.46.2.0196
  • Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effect of brackets. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group of Psychology of Mathematics Education, Bergen, Norway (Vol. 3, pp. 49–56). PME.
  • Holmlund, A. (2022). Different ways of experiencing linear equations with a multiplicative structure. In G. A. Nortvedt, N. F. Buchholtz, J. Fauskanger, M. Hähkiöniemi, B. E. Jessen, M. Naalsund, H. K. Nilsen, G. Pálsdóttir, J. P R I Portaankorva-Koivisto, J. Ö. Sigurjónsson, O. Viirman, & A. Wernberg (Eds.), Bringing Nordic mathematics education into the future. Proceedings of Norma 20. The ninth Nordic conference on mathematics education, Oslo, 2021 (pp. 89–96). SMDF.
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates.
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics (pp. 390–419). Macmillan Publishing Co, Inc.
  • Kieran, C. (2018). Seeking, using, and expressing structure in numbers and numerical operations: A fundamental path to developing early algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 79–105). Springer International Publishing. https://doi.org/10.1007/978-3-319-68351-5_4
  • Kieran, C. (2022). The multi-dimensionality of early algebraic thinking: Background, overarching dimensions, and new directions. ZDM – Mathematics Education, 54(6), 1131–1150. https://doi.org/10.1007/s11858-022-01435-6
  • Kirshner, D. (2001). The structural algebra option revisited. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 83–98). Kluwer.
  • Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173–196. https://doi.org/10.1023/A:1003606308064
  • Marton, F. (1981). Phenomenography – describing conceptions of the world around us. Instructional Science, 10(2), 177–200. https://doi.org/10.1007/BF00132516
  • Marton, F. (2014). Necessary conditions of learning. Routledge. https://doi.org/10.4324/9781315816876
  • Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, N.J. Erlbaum. https://doi.org/10.4324/9780203053690
  • Neuman, D. (1999). Early learning and awareness of division: A phenomenographic approach. Educational Studies in Mathematics, 40(2), 101–128. https://doi.org/10.1023/A:1003852815160
  • Pittalis, M. (2022). Young students’ arithmetic-algebraic structure sense: An empirical model and profiles of students. International Journal of Science and Mathematics Education, 1–23. https://doi.org/10.1007/s10763-022-10333-y
  • Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2018). A longitudinal study revisiting the notion of early number sense: Algebraic arithmetic as a catalyst for number sense development. Mathematical Thinking and Learning, 20(3), 222–247. https://doi.org/10.1080/10986065.2018.1474533
  • Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989). Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for Research in Mathematics Education, 20(1), 8–27. https://doi.org/10.2307/749095
  • Rice, J. A. (2007). Mathematical statistics and data analysis (3. ed.). [Non-fiction]. Thomson Brooks/Cole.
  • Shadish, W. R. (2002). Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin.
  • Stephens, A., Ellis, A., Blanton, M., & Brizuela, B. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386–420). National Council of Teachers of Mathematics.
  • Sumpter, L., & Löwenhielm, A. (2022). Differences in grade 7 students’ understanding of the equal sign. Mathematical Thinking and Learning, 1–16. https://doi.org/10.1080/10986065.2022.2058160
  • The Swedish Research Council. (2017) . Good research practice.
  • Tossavainen, T., Attorps, I., & Väisänen, P. (2011). On mathematics students’ understanding of the equation concept. Far East Journal of Mathematical Education, 6(2), 127–147.
  • Tuominen, J., Andersson, C., Bjorklund Boistrup, L., & Eriksson, I. (2018). Relate before calculate: Students’ ways of experiencing relationships between quantities. Didactica Mathematicae, 40, 5–33. https://bibliotekanauki.pl/articles/749306.pdf
  • Venkat, H., Askew, M., Watson, A., & Mason, J. (2019). Architecture of mathematical structure. For the Learning of Mathematics, 39(1), 13–17. https://www.jstor.org/stable/26742004
  • Viète, F., & Witmer, T. R. (2006). The analytic art. Courier Corporation.
  • Vlassis, J. (2002). The balance model: Hindrance or support for the solving of linear equations with one unknown. Educational Studies in Mathematics, 49(3), 341–359. https://doi.org/10.1023/A:1020229023965
  • Vlassis, J. (2008). The role of mathematical symbols in the development of number conceptualization: The case of the minus sign. Philosophical Psychology, 21(4), 555–570. https://doi.org/10.1080/09515080802285552
  • Vlassis, J., & Demonty, I. (2022). The role of algebraic thinking in dealing with negative numbers. ZDM – Mathematics Education, 54(6), 1243–1255. https://doi.org/10.1007/s11858-022-01402-1
  • Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122–137. https://doi.org/10.1007/BF03217374
  • Wettergren, S., Eriksson, I., & Tambour, T. (2021). Yngre elevers uppfattningar av det matematiska i algebraiska uttryck. LUMAT: International Journal on Math, Science and Technology Education, 9(1). https://doi.org/10.31129/LUMAT.9.1.1377
  • Xie, S., & Cai, J. (2022). Fifth graders’ learning to solve equations: The impact of early arithmetic strategies. ZDM–Mathematics Education, 54(6), 1169–1179. https://doi.org/10.1007/s11858-022-01417-8
  • Zazkis, R. (2001). From arithmetic to algebra via big numbers. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI Study Conference: The Future of the Teaching and Learning of Algebra, 2001, Melbourne, Australia (Vol 2, pp. 676–681). The University of Melbourne.