43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Children’s mathematical engagement based on their awareness of coding toy design features

ORCID Icon, , , &
Received 09 Nov 2023, Accepted 19 Jun 2024, Published online: 29 Jun 2024

References

  • American Academy of Pediatrics. (2010). Policy Statement — Media Education. Pediatrics, 126(5), 1012–1017. https://doi.org/10.1542/peds.2010-1636
  • Angeli, C., & Valanides, N. (2019). Developing young children’s computation thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105954, 1–13. https://doi.org/10.1016/j.chb.2019.03.018
  • Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school: Critical conceptual and methodological issues of the construct. Psychology in the Schools, 45(5), 369–386. https://doi.org/10.1002/pits.20303
  • Barnes, M. A., Stubbs, A., Raghubar, K. P., Agostino, A., Taylor, H., Landry, S., Fletcher, J. M., & Smith-Chant, B. (2011). Mathematical skills in 3- and 5-year-olds with spina bifida and their typically developing peers: A longitudinal approach. Journal of the International Neuropsychological Society, 17(3), 431–444. https://doi.org/10.1017/S1355617711000233
  • Battista, M. T. (1999). The importance of spatial structuring in geometric reasoning. Teaching Children Mathematics, 6(3), 170–177. https://doi.org/10.5951/TCM.6.3.0170
  • Battista, M. T., Clements, D. H., Arnoff, J., Battista, K., & Borrow, C. V. A. (1998). Students’ spatial structuring of 2D arrays of squares. Journal for Research in Mathematics Education, 29(5), 503–532. https://doi.org/10.2307/749731
  • Benton, A. (1959). Right-left discrimination and finger localization. Hoeber-Harper.
  • Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020
  • Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130–145. https://doi.org/10.1016/j.compedu.2019.04.013
  • Berson, I. R., Berson, M. J., McKinnon, C., Aradhya, D., Alyaeesh, M., Luo, W., & Shapiro, B. R. (2023). An exploration of robot programming as a foundation for spatial reasoning and computational thinking in preschoolers’ guided play. Early Childhood Research Quarterly, 65, 57–67. https://doi.org/10.1016/j.ecresq.2023.05.015
  • Bullock, E. P., Shumway, J. F., Watts, C. M., & Moyer-Packenham, P. S. (2017). Affordance access matters: Preschool children’s learning progressions while interacting with touch-screen mathematics apps. Technology, Knowledge, and Learning, 22(3), 485–511.
  • Burlamaqui, L., & Dong, A. (2014). The use and misuse of the concept of affordance. In J. S. Gero (Ed.), Design computing and cognition DCC’14 (pp. 295–311). Springer.
  • Carbonneau, J. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380–400. https://doi.org/10.1037/a0031084
  • Charmaz, K. (2002). Qualitative interviewing and grounded theory analysis. In J. F. Gubrium & J. A. Holstein (Eds.), Handbook of interview research: Context & method (pp. 675–694). Sage.
  • Cittá, G., Gentile, M., Allegra, M., Arrigo, M., Conti, D., Ottaviano, S., Reale, F., & Sciortino, M. (2019). The effects of mental rotation on computational thinking. Computers & Education, 141, 103613. https://doi.org/10.1016/j.compedu.2019.103613
  • Clarke-Midura, J., Kozlowski, J. S., Shumway, J. F., & Lee, V. R. (2021). How young children engage in and shift between reference frames when playing with coding toys. International Journal of Child-Computer Interaction, 28(100250), 1–12.
  • Clarke-Midura, J., Lee, V. R., Shumway, J. F., & Hamilton, M. (2019). The building blocks of coding: A comparison of early childhood coding toys. Information and Learning Science, 120(7/8), 505–518.
  • Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a logo environment. Journal for Research in Mathematics Education, 20(5), 450–467. https://doi.org/10.2307/749420
  • Clements, D. H., Battista, M. T., Sarama, J., & Swaminathan, S. (1996). Development of turn and turn measurement concepts in a computer-based instructional unit. Educational Studies in Mathematics, 30(4), 313–337. https://doi.org/10.1007/BF00570828
  • Cobb, P., Confrey, J., diSessa, A. A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009
  • Confrey, J., & Lachance, A. (2012). Transformative teaching experiments through conjecture-driven research design. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 231–265). Routledge.
  • Corbin, J., & Strauss, A. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.). Sage.
  • Cross, C. T., Woods, T. A., & Schweingruber, H. (2009). Mathematics learning in early childhood: Paths toward excellence and equity. National Research Council.
  • Cuneo, D. O. (1985). Young children and turtle graphics programming: Understanding turtle commands [paper presentation]. Biennial Meeting of the Society for Research in Child Development, Toronto, Ontario, Canada.
  • DeCuir-Gunby, J. T., Marshall, P. L., & McCulloch, A. W. (2012). Using mixed methods to analyze video data: A mathematics teacher professional development example. Journal of Mixed Methods Research, 6(3), 199–216. https://doi.org/10.1177/1558689811421174
  • Desoete, A., Praet, M., Velde, C. V., Craene, B. D., & Hantson, E. (2016). Enhancing mathematical skills through interventions with virtual manipulatives. In P. S. Moyer-Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manipulatives (pp. 171–187). Springer.
  • diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design experiments. Journal of the Learning Sciences, 13(1), 77–103. https://doi.org/10.1207/s15327809jls1301_4
  • Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J. Green, G. Camilli, P. Elmore, A. Skukauskaite, & E. Grace (Eds.), Handbook of complementary methods in education research (pp. 177–191). Routledge.
  • Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years old kindergarten children in a computer programming environment: A case study. Computers and Education, 63, 87–97. https://doi.org/10.1016/j.compedu.2012.11.016
  • Friso van Den Bos, I., Kroesbergen, E. H., & Van Luit, J. E. (2018). Counting and number line trainings in kindergarten: Effects on arithmetic performance and number sense. Frontiers in Psychology, 9, 1–11. https://doi.org/10.3389/fpsyg.2018.00975
  • Gibson, J. J. (1977). The theory of affordance. Perceiving, acting, and knowing: Toward an ecological psychology. Erlbaum.
  • Gibson, J. J. (1979a). The ecological approach to visual perception. Erlbaum.
  • Gibson, J. J. (1979b). The theory of affordances. In J. J. Gieseking, W. Mangold, C. Katz, S. Low, & S. Saegert (Eds.), The people, place, and space reader (pp. 56–64). Routledge.
  • Gilligan, K. A., Flouri, E., & Farran, E. K. (2017). The contribution of spatial ability to mathematics achievement in middle childhood. Journal of Experimental Child Psychology, 163, 107–125. https://doi.org/10.1016/j.jecp.2017.04.016
  • Goos, M., Carreira, S., & Namukasa, I. K. (2023). Mathematics and interdisciplinary STEM education: Recent developments and future directions. ZDM – Mathematics Education, 55(7), 1199–1217. https://doi.org/10.1007/s11858-023-01533-z
  • Guarino, C., Dieterle, S. G., Bargagliotti, A. E., & Mason, W. M. (2013). What can we learn about effective early mathematics teaching? A framework for estimating causal effects using longitudinal survey data. Journal of Research on Educational Effectiveness, 6(2), 164–198. https://doi.org/10.1080/19345747.2012.706695
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433
  • Hamilton, M., Clarke-Midura, J., Shumway, J. F., & Lee, V. R. (2020). An emerging technology report on computational toys in early childhood. Technology, Knowledge, and Learning, 25, 213–224. https://doi.org/10.1007/s10758-019-09423-8
  • Harris, L. J. (1972). Discrimination of left and right, and development of the logic relations. Merrill-Palmer Quarterly of Behavior and Development, 18(4), 307–320. https://www.jstor.org/stable/23084024
  • Heljakka, K., & Ihamäki, P. (2019). Ready, steady, move! Coding toys, preschoolers, and mobile playful learning. In P. Zaphiris & A. Ioannou (Eds.), Learning and collaboration technologies. Ubiquitous and virtual environments for learning and collaboration. HCII 2019. Lecture Notes in Computer Science (p. 11591). Springer. https://doi.org/10.1007/978-3-030-21817-1_6
  • Keane, T. (2023). Introduction: The need for programming and computational thinking from early childhood education through to secondary schooling. In T. Keane & A. E. Fluck (Eds.), Teaching coding in K-12 schools. Springer. https://doi.org/10.1007/978-3-031-21970-2_1
  • Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition (pp. 1–17). Springer. https://doi.org/10.1007/3-540-69342-4_1
  • Krüger, M., Kaiser, M., Mahler, K., Bartels, W., & Krist, H. (2014). Analogue mental transformations in 3-year-olds: Introducing a new mental rotation paradigm suitable for young children. Infant and Child Development, 23(2), 123–138. https://doi.org/10.1002/icd.1815
  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind & its challenge to western thought. Basic Books.
  • Lakoff, G., & Nuñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.
  • Lesh, R. A., & Johnson, H. (1976). Models and applications as advanced organizers. Journal for Research in Mathematics Education, 7(2), 75–81. https://doi.org/10.2307/748863
  • Manches, A., & O’Malley, C. (2016). The effects of physical manipulatives on children’s numerical strategies. Cognition and Instruction, 34(1), 27–50. https://doi.org/10.1080/07370008.2015.1124882
  • McCluskey, C., Kilderry, A., Mulligan, J., & Kinnear, V. (2023). The role of movement in young children’s spatial experiences: A review of early childhood mathematics education research. Mathematics Education Research Journal, 35(2), 287–315. https://doi.org/10.1007/s13394-023-00446-0
  • Miles, M. B., Huberman, A. M., & Saldaña, J. (2020). Qualitative data analysis: A methods sourcebook (4th ed.). Sage.
  • Mix, K. S. (2009). Spatial tools for mathematical thought. In K. S. Mix, L. B. Smith, & M. Gasser (Eds.), The spatial foundations of cognition and language (pp. 40–66). Oxford Scholarship.
  • Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., & Gajdzik, E. (2020). Multiple representations in computational thinking tasks: A clinical study of second-grade children. Journal of Science Education and Technology, 29(1), 19–34. https://doi.org/10.1007/s10956-020-09812-0
  • Moreno-Armella, L., Hegedus, S. J., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies of Mathematics, 68(2), 99–111. https://doi.org/10.1007/s10649-008-9116-6
  • Moyer-Packenham, P. S., Ashby, J., Litster, K., Roxburgh, A., & Kozlowski, J. S. (2020). Examining how design features promote children’s awareness of affordances in digital math games. Journal of Computers in Mathematics & Science Teaching, 39(2), 169–180.
  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on children achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50. http://doi.org/10.4018/jvple.2013070103.
  • Muñoz-Repiso, A. G. V., & Caballero-González, Y. A. (2019). Robotics to develop computational thinking in early childhood education. Comunicar, 27(59), 63–72. https://doi.org/10.3916/C59-2019-06
  • Murcia, K., & Tang, K. S. (2019). Exploring the multimodality of young children’s coding. Australian Educational Computing, 34(1), 1–15.
  • Nam, K. W., Kim, H. J., & Lee, S. (2019). Connecting plans to action: The effects of a card-coded robotics curriculum and activities on Korean kindergartners. Asia-Pacific Educational Research, 28(5), 387–397. https://doi.org/10.1007/s40299-019-00438-4
  • National Research Council (NRC). (2006). Learning to think spatially. The national academies press. https://doi.org/10.17226/11019
  • Paek, S. (2012). The Impact of Multimodal Virtual Manipulatives on Young children’s Mathematics Learning (Publication No. 3554708) [ Doctoral dissertation]. Teachers College, Columbia University. https://login.dist.lib.usu.edu/login?url=https://www.proquest.com/dissertations-theses/impact-multimodal-virtual-manipulatives-on-young/docview/1317415482/se-2?accountid=14761
  • Palmér, H. (2017). Programming in preschool–with a focus on learning mathematics. International Research in Early Childhood Education, 8(1), 75–87.
  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249–262. https://doi.org/10.1080/0020739700030306
  • Papert, S. (1980). Mindstorms (2nd ed.). Basic Books.
  • Piaget, J. (1968). Judgement and reasoning in the child. Routledge & Kegan Paul.
  • Pritulsky, C., Morano, C., Odean, R., Bower, C., Hirsh-Pasek, K., & Michnick Golinkoff, R. (2020). Spatial thinking: Why it belongs in the preschool classroom. Translational Issues in Psychological Science, 6(3), 271–282. https://doi.org/10.1037/tps0000254
  • Saldaña, J. (2021). The coding manual for qualitative researchers (4th ed.). Sage.
  • Sarama, J., Clements, D. H., Barrett, J. E., Cullen, C. J., Hudyma, A., & Vanegas, Y. (2022). Length measurement in the early years: Teaching and learning with learning trajectories. Mathematical Thinking and Learning, 24(4), 267–290. https://doi.org/10.1080/10986065.2020.1858245
  • Shumway, J. F., Clarke-Midura, J., Lee, V. R., Hamilton, M. M., & Baczuk, C. (2019). Coding toys in kindergarten. Teaching Children Mathematics, 25(5), 314–317.
  • Shumway, J. F., Welch, L. E., Kozlowski, J. S., Clarke-Midura, J., & Lee, V. R. (2023). Kindergarten students’ mathematics knowledge at work: The mathematics for programming robot toys. Mathematical Thinking and Learning, 25(4), 380–408.
  • Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Review of Psychology, 68(1), 187–213. https://doi.org/10.1146/annurev-psych-010416-044101
  • Smith, J. P., Males, L. M., Dietiker, L. C., Lee, K., & Mosier, A. (2013). Curricular treatments of length measurement in the United States: Do they address known learning challenges? Cognition and Instruction, 31(4), 388–433. https://doi.org/10.1080/07370008.2013.828728
  • Solomon, T. L., Vasilyeva, M., Huttenlocher, J., & Levine, S. C. (2015). Minding the gap: Children’s difficulty conceptualizing spatial intervals as linear measurement units. Developmental Psychology, 51(11), 1564. https://doi.org/10.1037/a0039707
  • Steffe, L. P., Thompson, P. W., & von Glasersfeld, E. (2012). Teaching experiment methodology underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267–306). Routledge.
  • Sung, W., Ahn, A., & Black, J. B. (2017). Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education. Technology, Knowledge, and Learning, 22(3), 443–463. https://doi.org/10.1007/s10758-017-9328-x
  • Terroba, M., Ribera, J. M., Lapresa, D., & Anguera, M. R. (2021). Propuesta de intervención mediante un robot de suelo con mandos de direccionalidad programada: análisis observacional del desarrollo del pensamiento computacional en educación infantil. Revista de Psicodidáctica, 26(2), 143–151. https://doi.org/10.1016/j.psicod.2021/03.001
  • VERBI Software. (2019). MAXQDA 2020 Online Manual. https://www.maxqda.com/help-mx22/welcome
  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817. https://doi.org/10.1037/a0016127
  • Welch, L., Shumway, J. F., Clarke-Midura, J., & Lee, V. R. (2022). Exploring measurement through coding: Children’s conceptions of a dynamic linear unit with coding robot toys. Education Sciences, 12(143), 1–19. https://doi.org/10.3390/educsci12020143
  • Winters, J. J., Winters, K. R., & Kimmins, D. L. (2020). The nuts and bots of math and coding in the lower grades. The Mathematics Teacher: Learning & Teaching, 113(8), 628–636. https://doi.org/10.5951/MTLT.2019.0366
  • Yu, J., & Roque, R. (2019). A review of computational toys and kits for young children. International Journal of Child-Computer Interaction, 21, 17–36. https://doi.org/10.1016/j.ijcci.2019.04.001
  • Zhang, X. (2016). Linking language, visual-spatial, and executive function skills to number competence in very young Chinese children. Early Childhood Research Quarterly, 36, 178–189. https://doi.org/10.1016/j.ecresq.2015.12.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.