Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 9, 2006 - Issue 3-4
219
Views
31
CrossRef citations to date
0
Altmetric
Articles

A nonpungent component of steamed ginger—[10]-shogaol—increases adrenaline secretion via the activation of TRPV1

, , , , , , & show all
Pages 169-178 | Published online: 05 Sep 2013

References

  • Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI. 1994. Antioxidant actions of thymol, carvacrol, 6- gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36.
  • Appendino G, Minassi A, Morello AS, De Petrocellis L, Di Marzo V. 2002. N-acylvanillamides: Development of an expeditious synthesis and discovery of new acyl templates for powerful activation of the vanilloid receptor. J Med Chem 45:3739–3745.
  • Blaak EE, Baak MAV, Kemerink GJ, Pakbiers MTW, Heidendal GAK, Saris WHM. 1994a. É,f-Adrenaerigic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol 267:E306–E315.
  • Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH. 1994b. Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol 267:E306–E315.
  • Brand L, Berman E, Schwen R, Loomans M, Janusz J, Bohne R, Maddin C, Gardnner J, Lahann T, Farmer R, et al. 1987. NE- 19550: A novel, orally active anti-inflammatory analgesic. Drug Exptl Clin Res 13:259–265.
  • Carlton SM, Zhou S, Du J, Hargett GL, Ji G, Coggeshall RE. 2004. Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel. Pain 110:616–627.
  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. 1997. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 389:816–824.
  • Dedov VN, Tran VH, Duke CC, Connor M, Christie MJ, Mandadi S, Roufogalis BD. 2002. Gingerols: A novel class of vanilloid receptor (VR1) agonists. Br J Pharmacol 137:793–798.
  • Ding GH, Naora K, Hayashibara M, Katagiri Y, Kano Y, Iwamoto K. 1991. Pharmacokinetics of [6]-gingerol after intravenous administration in rats. Chem Pharm Bull (Tokyo) 39: 1612–1614.
  • Eldershaw TP, Colquhoun EQ, Dora KA, Peng ZC, Clark MG. 1992. Pungent principles of ginger (Zingiber officinale) are thermogenic in the perfused rat hindlimb. Int J Obes Relat Metab Disord 16:755–763.
  • Fleming SA, Dyer CW, Eggington J. 1999. A convenient one- step gingerol synthesis. 29:1933–1939.
  • Fujisawa F, Nadamoto T, Fushiki T. 2005. Effect of intake of ginger on peripheral body temperature. J Jpn Soc Nutr Food Sci 58: 3–9.
  • Govindarajan VS. 1982a. Ginger—chemistry, technology, and quality evaluation: Part 1. Crit Rev Food Sci Nutr 17:1–96.
  • Govindarajan VS. 1982b. Ginger—chemistry, technology, and quality evaluation: Part 2. Crit Rev Food Sci Nutr 17:189–258.
  • Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450.
  • Guh JH, Ko FN, Jong IT, Teng CM. 1995. Antiplatelet effect of gingerol isolated from Zingiber officinale. J Pharm Pharmacol 47 : 329–332.
  • Harnisch M. 1983. Relationaship between Logpow shake-flask values and capacity factors derived form reversed-phase highperformance liquid chromatography for n-alkylbenzenes and some oced reference substances. J Chromatogr 283:315–332.
  • Henry CJ, Piggott SM. 1987. Effect of ginger on metabolic rate. Hum Nutr Clin Nutr 41:89–92.
  • Iida T, Moriyama T, Kobata K, Morita A, Murayama N, Hashizume S, Fushiki T, Yazawa S, Watanabe T, Tominaga M. 2003. TRPV1 activation and induction of nociceptive response by a non-pungent capsaicin-like compound, capsiate. Neuropharmacology 44:958–967.
  • Iwai K, Yazawa A, Watanabe T. 2003. Roles as metabolic regulators of the non-nutrients, capsaicin and capsiate, supplemented to diets. Proc Japan Acad 79:207–212.
  • Iwami M, Terada S, Sunahara M, Shimooka R, Shimazu R. 2003. Effect of ginger and its effective components on energy expenditure in rats (in Japanese). J Jpn Soc Nutr Food Sci 56: 159–165.
  • Jimenez-Andrade JM, Zhou S, Du J, Yamani A, Grady JJ, Castaneda-Hernandez G, Carlton SM. 2004. Pro-nociceptive role of peripheral galanin in inflammatory pain. Pain 110:10–21.
  • Kawada T, Watanabe T, Katsura K, Takami H, Iwai K. 1985. Formation and metabolism of pungent principle of Capsicum fruits. XV. Microdetermination of capsaicin by high-performance liquid chromatography with electrochemical detection. J Chromatogr 329:99–105.
  • Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. 1986. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: Influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med 183:250–256.
  • Kawada T, Sakabe S, Watanabe T, Yamamoto M, Iwai K. 1988. Some pungent principles of spices cause the adrenal medulla to secrete catecholamine in anesthetized rats. Proc Soc Exp Biol Med 188:229–233.
  • Khalil Z, Marley PD, Livett BG. 1984. Neounatal capsaicin treatment prevents insulin-stress-induced adrenal catecholamine secretion in vivo: Possible involvement of sensory nerves containing substance P. Neurosci Lett 45:65–70.
  • Kido MA, Muroya H, Yamaza T, Terada Y, Tanaka T. 2003. Vanilloid receptor expression in the rat tongue and palate. J Dent Res 82:393–397.
  • Lim K, Yoshioka M, Kikuzato S, Kiyonaga A, Tanaka H, Shindo M, Suzuki M. 1997. Dietary red pepper ingestion increases carbohydrate oxidation at rest and during exercise in runners. Med Sci Sports Exerc 29:355–361.
  • McNamara FN, Randall A, Gunthorpe MJ. 2005. Effects of pipeline, the pungent component of black pepper, at the human vanilloid receptor (TRPV1). Br J Pharmacol 144:781–790.
  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, et al. 2002. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231.
  • Ohnuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T. 2001a. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 65: 2735–2740.
  • Ohnuki K, Moritani T, Ishihara K, Fushiki T. 2001b. Capsaicin increases modulation of sympathetic nerve activity in rats: Measurement using power spectral analysis of heart rate fluctuations. Biosci Biotechnol Biochem 65:638–643.
  • Ohnuki K, Niwa S, Maeda S, Inoue N, Yazawa S, Fushiki T. 2001c. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans. Biosci Biotechnol Biochem 65:2033–2036.
  • Onogi T, Minami M, Kuraishi Y, Satoh M. 1992. Capsaicin-like effect of (6)-shogaol on substance P-containing primary afferents of rats: A possible mechanism of its analgesic action. Neuropharmacology 31:1165–1169.
  • Park KK, Chun KS, Lee JM, Lee SS, Surh YJ. 1998. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett 129:139–144.
  • Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M, Hosoya E. 1984. Pharmacological studies on ginger. I. Pharmacological actions of pungent constitutents, (6)-gingerol and (6)-shogaol. J Pharmacobiodyn 7:836–848.
  • Szolcsanyi J, Jancso-Gabor A. 1975. Sensory effects of capsaicin congeners I. Relationship between chemical structure and pain- producing potency of pungent agents. Arzneimittelforschung 25:1877–1881.
  • Szolcsanyi J, Jancso-Gabor A. 1976. Sensory effects of capsaicin congeners. Part II: Importance of chemical structure and pungency in desensitizing activity of capsaicin-type compounds. Arzneimittelforschung 26:33–37.
  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543.
  • Wada T, Muranishi S, Masuda H, Manabe H, Izumi K. 1996. Preparation of gingerols and shogaols from gingerone. Jpn Kokai Tokkyo Koho :0840970.
  • Watanabe T, Kawada T, Kurosawa M, Sato A, Iwai K. 1988. Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats. Am J Physiol 255: E23–E27.
  • Watanabe T, Kawada T, Kato T, Harada T, Iwai K. 1994. Effects of capsaicin analogs on adrenal catecholamine secretion in rats. Life Sci 54:369–374.
  • Watanabe T, Sakurada N, Kobata K. 2001. Capsaicin-, resinifer- atoxin-, and olvanil-induced adrenaline secretions in rats via the vanilloid receptor. Biosci Biotechnol Biochem 65:2443–2447.
  • Witte DG, Cassar SC, Masters JN, Esbenshade T, Hancock AA. 2002. Use of a fluorescent imaging plate reader-based calcium assay to assess pharmacological differences between the human and rat vanilloid receptor. J Biomol Screen 7:466–475.
  • Yang BH, Piao ZG, Kim YB, Lee CH, Lee JK, Park K, Kim JS, Oh SB. 2003. Activation of vanilloid receptor 1 (VR1) by eugenol. J Dent Res 82:781–785.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.