401
Views
14
CrossRef citations to date
0
Altmetric
Articles

Depositional framework of the East Baltic Tremadocian black shale revisited

, , &
Pages 464-482 | Received 12 Jul 2013, Accepted 14 Nov 2013, Published online: 14 Jan 2014

References

  • Algeo, T.J. & Maynard, J.B., 2004: Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology206, 289–318.
  • Andersson, A., Dahlman, B., Gee, D.G. & Snäll, S., 1985: The Scandinavian Alum Shales. Sveriges Geologiska Undersökning Serie Ca56, 1–50.
  • Aplin, A.C. & Macquaker, J.H.S., 2011: Mudstone diversity: origin and implications for source, seal and reservoir properties in petroleum systems. AAPG Bulletin95 (12), 2031–2059.
  • Arthur, M.A. & Sageman, B.B., 2005: Sea level control on source rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. In N.B.Harris & B.Pradier (eds.): The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms and Consequences. SEPM Special Publication 82, 35–59.
  • Artyushkov, E.V., Lindstrom, M. & Popov, L.E., 2000: Relative sea-level changes in Baltoscandia in the Cambrian and early Ordovician: the predominance of tectonic factors and the absence of large scale eustatic fluctuations. Tectonophysics320, 375–407.
  • Baas, J.H. & Best, J.L., 2002: Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. Journal of Sedimentary Research72, 336–340.
  • Baas, J.H., Best, J.L. & Peakall, J., 2011: Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology58, 1953–1987.
  • Blumenberg, M. & Wiese, F., 2012: Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany). Biogeosciences9 (10), 4139–4153.
  • Buchardt, B., Nielsen, A.T. & Schovsbo, N.H., 1997: Alun skiferen i Skandinavien. Geologisk Tidsskrift3, 1–30.
  • Chester, R., 2003: Marine Geochemistry. Blackwell Publishing, London. 506 pp.
  • Cocks, L.R.M. & Torsvik, T.H., 2005: Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews72, 39–66.
  • Cooper, R.A. & Sadler, P.M., 2012: Chapter 20. The Ordovician Period. In F.M.Gradstein, J.G.Ogg, M.D.Schmitz & G.M.Ogg (eds.): The Geological Time Scale 2012, 489–523. Elsevier, Amsterdam.
  • Davies, N.S. & Gibling, M.R., 2010: Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Science Reviews98, 171–200.
  • Decho, A.W., 1990: Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography & Marine Biology, Annual Review28, 73–154.
  • Dronov, A.V., Ainsaar, L., Kaljo, D., Meidla, T., Saadre, T. & Einasto, R., 2011: Ordovician of Baltoscandia: facies, sequences and sea-level changes. In J.C.Gutierrez-Marco, I.Rabano & D.Garcia-Bellido (eds.): Ordovician of the World, 143–150. Instituto Geologico y Minero de Espaňa, Madrid.
  • Dronov, A.V., Mikuláš, R. & Loginova, M., 2002: Trace fossils and ichnofabrics across the Volkhov depositional sequence (Ordovician, Arenigian of St. Petersburg Region, Russia). Journal of the Czech Geological Society47 (3-4), 133–146.
  • Egenhoff, S.O. & Fishman, N.S., 2013: Traces in the dark-sedimentary processes and facies gradients in the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, Williston Basin, North Dakota, USA. Journal of Sedimentary Research83, 803–824.
  • Egenhoff, S.O. & Maletz, J., 2012: The sediments of the Floian GSSP: depositional history of the Ordovician succession at Mount Hunneberg, Västergötland, Sweden. GFF134 (4), 237–249.
  • Emeis, K.C., Struck, U., Leipe, T., Pollehne, F., Kunzendorf, H. & Christiansen, C., 2000: Changes in the C, N, P burial rates in some Baltic Sea sediments over the last 150 years – relevance to P regeneration rates and the phosphorus cycle. Marine Geology167, 43–59.
  • Ganeshram, R.S., Calvert, S.E., Pedersen, T.F. & Cowie, G.A., 1999: Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: implications for hydrocarbon preservation. Geochimica et Cosmochimica Acta63, 1723–1734.
  • Ghadeer, S.G. & Macquaker, J.H.S., 2011: Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. Journal of the Geological Society168, 1121–1132.
  • Ghadeer, S.G. & Macquaker, J.H.S., 2012: The role of event beds in the preservation of organic carbon in fine-grained sediments: analyses of the sedimentological processes operating during deposition of the Whitby Mudstone Formation (Toarcian, Lower Jurassic) preserved in northeast England. Marine and Petroleum Geology35 (1), 309–320.
  • Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. & Saltzman, M.R., 2011: Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature469, 80–83.
  • Gorin, G., Fiet, N. & Pacton, M., 2009: Benthic microbial mats: a possible major component of organic matter accumulation in the Lower Aptian oceanic anoxic event. Terra Nova21, 21–27.
  • Hatch, J.R. & Leventhal, J.S., 1992: Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology99, 65–82.
  • Heinsalu, H., 1980: On the facial relations of upper Tremadocian deposits in North Estonia. Proceedings of the Academy of Sciences of the Estonian SSR, Geology29 (1), 1–7 (in Russian).
  • Heinsalu, H., 1986: The lithofacial zonality of Early Tremadoc deposits in the East-European Platform. Proceedings of the Academy of Sciences of the Estonian SSR, Geology35 (3), 115–121 (in Russian with English summary).
  • Heinsalu, H., 1990: On the lithology and stratigraphy of the late Tremadoc graptolitic argillites of North-West Estonia. Proceedings of the Estonian Academy of Sciences, Geology39 (4), 142–151 (in Russian with English summary).
  • Heinsalu, H., Kaljo, D., Kurvits, T. & Viira, V., 2003: The stratotype of the Orasoja Member (Tremadocian, Northeast Estonia): lithology, mineralogy, and biostratigraphy. Proceedings of the Estonian Academy of Sciences. Geology52 (3), 135–154.
  • Heinsalu, H., Viira, V. & Raudsep, R., 1994: Environmental conditions of shelly phosphorite accumulation in the Rakvere phosphorite region, northern Estonia. Proceedings of the Estonian Academy of Sciences, Geology43 (3), 109–121.
  • Hiller, N., 1993: A modern analogue for the Lower Ordovician Obolus conglomerate of Estonia. Geological Magazine130, 265–267.
  • Hints, O. & Nõlvak, J., 2006: Early Ordovician scolecodonts and chitinozoans from Tallinn, North Estonia. Review of Palaeobotany andPalynology139, 189–209.
  • Ichaso, A.A. & Dalrymple, R.W., 2009: Tide- and wave generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology37, 539–542.
  • Ilyin, A.V. & Heinsalu, H.N., 1990: Early Ordovician shelly phosphorites of the Baltic Phosphate Basin. In A.J.G.Notholt & I.Jarvis (eds.): Phosphorite research and development.Geological Society of London Special Publication 52, 253–259.
  • Jaanusson, V., 1976: Faunal dynamics in the Middle Ordovician (Viruan) of Balto-Scandia. In M.G.Bassett (ed.): The Ordovician system. Proceedings of the Palaeontological Association, 301–326. University of Wales Press, Cardiff.
  • Jones, B. & Manning, D.A.C., 1994: Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology111, 111–129.
  • Kaljo, D., Borovko, N., Heinsalu, H., Khazanovich, K., Mens, K., Popov, L., Sergejeva, S., Sobolevskaja, R. & Viira, V., 1986: The Cambrian–Ordovician boundary in the Baltic-Ladoga Clint area (North Estonia and Leningrad Region, USSR). Proceedings of the Academy of Sciences of the Estonian SSR, Geology35 (3), 97–108.
  • Kaljo, D. & Kivimägi, E., 1970: On the distribution of graptolites in the Dictyonema shale of Estonia and the uncontemporaneity of its different facies. Proceedings of the Academy of Sciences of the Estonian SSR. Chemistry and Geology19 (4), 334–341 (in Russian with English summary).
  • Kazmierczak, J., Kremer, B. & Racki, G., 2012: Late Devonian marine anoxia challenged by benthic cyanobacterial mats. Geobiology10, 371–383.
  • Kiipli, E. & Kiipli, T., 2013: Nitrogen isotopes in kukersite and black shale, implying Ordovician–Silurian seawater redox conditions. Oil Shale30 (1), 60–75.
  • Kirsimäe, K., Jørgensen, P. & Kalm, V., 1999: Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals34 (1), 151–163.
  • Kivimägi, E. & Loog, A., 1972: The main structural types of graptolitic argillites of the Toolse deposit. Proceedings of the Academy of Sciences of the Estonian SSR. Chemistry and Geology21 (2), 143–147 (in Russian with English summary).
  • Kivimägi, E. & Teedumäe, A., 1971: Results of a complex estimation of the rocks in the phosphorite deposit of Toolse. Proceedings of the Academy of Sciences of the Estonian SSR. Chemistry and Geology20 (3), 243–250 (in Russian with English summary).
  • Kleesment, A. & Kurvits, T., 1987: Mineralogy of Tremadoc graptolitic argillites of North Estonia. Oil Shale4 (2), 130–138 (in Russian with English summary).
  • Klesment, I. & Urov, K., 1980: Role of bacterial lipids in the formation of geolipids and kerogens. Proceedings of the Academy of Sciences of the Estonian SSR.Chemistry29 (4), 241–245.
  • Leckie, D.A., Singh, C., Goodarzi, F. & Wall, J.H., 1990: Organic-rich, radioactive marine shale: a case study of a shallow-water condensed section, Cretaceous Shaftesbury Formation, Alberta, Canada. Journal of Sedimentary Petrology60, 101–117.
  • Lille, U., 2003: Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale20 (3), 253–263.
  • Lindgreen, H., Drits, V.A., Sakharov, B.A., Salyn, A.L. & Dainyak, L.G., 2000: Illite–smectite structural changes during metamorphism in black Cambrian Alum Shales from the Baltic area. American Mineralogist85, 1223–1238.
  • Loog, A., Kurvits, T., Aruväli, J. & Petersell, V., 2001: Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale18 (4), 281–297.
  • Loog, A. & Petersell, V., 1995: Authigenic siliceous minerals in the Tremadoc graptolitic argillite of Estonia. Proceedings of the Estonian Academy of Sciences. Geology44 (1), 26–32.
  • Loucks, R.G., Reed, R.M., Ruppel, S.C. & Jarvie, D.M., 2009: Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research79, 848–861.
  • Lyons, T.W. & Kashgarian, M., 2005: Paradigm lost, paradigm found. The Black Sea-black shale connection as viewed from the Anoxic Basin Margin. Oceanography18, 86–99.
  • Mackay, D.A. & Dalrymple, R.W., 2011: Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. Journal of Sedimentary Research81, 901–920.
  • Macquaker, J.H.S., Bentley, S.J. & Bohacs, K.M., 2010a: Wave enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology38, 947–950.
  • Macquaker, J.H.S., Keller, M.A. & Davies, S.J., 2010b: Algal blooms and “Marine snow”: mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. Journal of Sedimentary Research80, 934–942.
  • Männil, R., 1966: Evolution of the Baltic basin during the Ordovician. Valgus, Tallinn. 201 pp (in Russian).
  • Mens, K., Heinsalu, H., Jegonjan, K., Kurvits, T., Puura, I. & Viira, V., 1996: Cambrian–Ordovician boundary beds in the Pakri Cape section, NW Estonia. Proceedings of the Estonian Academy of Sciences. Geology45, 9–21.
  • Mens, K. & Pirrus, E., 1997: Vendian - Tremadocian clastogenic sedimentation basins. In A.Raukas & A.Teedumäe (eds.): Geology and Mineral Resources of Estonia, 184–191.
  • Murphy, A.E., Sageman, B.B., Hollander, D.J., Lyons, T.W. & Brett, C.E., 2000: Black shale deposition and faunal overturn in the Devonian Appalachian basin: clastic starvation, seasonal water-column mixing and efficient biolimiting nutrient recycling. Paleooceanography15, 280–291.
  • Müürisepp, K., 1960: Die Lithostratigraphie der Packerort-Stufe nach den Angaben der Aufschlüsse in der Estnischen SSR. In ENSV TA Geoloogia Instituudi uurimused 5, 37–44. ENSV Teaduste Akadeemia, Tallinn. (in Russian with German summary).
  • Müürisepp, K., 1964: Käsnläätsedest Pakerordi lademes. In ENSV Teaduste Akadeemia Looduseuurijate Seltsi aastaraamat 56, 17–24. Valgus, Tallinn.
  • Nemliher, J. & Puura, I., 1996: Upper Cambrian basal conglomerate of the Kallavere Formation on the Pakri peninsula, NW Estonia. Proceedings of the Estonian Academy of Sciences.Geology45, 1–8.
  • Nielsen, A.T., 2004: Sea-level changes – a Baltoscandian perspective. In B.D.Webby, F.Paris, M.L.Droser & I.G.Percival (eds.): The Great Ordovician Biodiversification Event, 84–93. Columbia University Press, New York.
  • Nielsen, A.T. & Schovsbo, N.H., 2006: Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark53, 47–92.
  • Nielsen, A.T. & Schovsbo, N.H., 2011: The Lower Cambrian of Scandinavia: depositional environment, sequence stratigraphy and palaeogeography. Earth-Science Reviews107, 207 − 310.
  • Niin, M., Rammo, M. & Saadre, R., 2008: Eesti Maavarade kaart. V etapp. 1:400 000 (1:200 000). Diktüoneemakilt (graptoliitargilliit). Seletuskiri. Eesti Geoloogiakeskus, Tallinn.
  • Noffke, N., 2009: The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews96 (3), 173–180.
  • Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W.E., 2001: Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research71 (5), 649.
  • Paalits, I., 1995: Acritarchs from the Cambrian–Ordovician boundary beds at Tõnismägi, Tallinn, North Estonia. Proceedings of the Estonian Academy of Sciences. Geology44 (2), 87–96.
  • Pacton, M., Fiet, N. & Gorin, G., 2007: Bacterial activity and preservation of sedimentary organic matter: the role of exopolymeric substances. Geomicrobiology Journal24, 571–581.
  • Pedersen, T.F. & Calvert, S.E., 1990: Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?AAPG Bulletin74 (4), 454–466.
  • Plint, A.G., Macquaker, J.H.S. & Varban, B.L., 2012: Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian–Turonian Kaskapau Formation, Western Canada Foreland Basin. Journal of Sedimentary Research82 (11), 801–822.
  • Potter, P.E., Maynard, J.B. & Pryor, W.A., 1980: Sedimentology of Shale. Study Guide and Reference Source. Springer-Verlag, New York. 303 pp.
  • Pukkonen, E. & Rammo, M., 1992: Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of North-Western Estonia. Bulletin of the Geological Survey of Estonia2 (1), 3–15.
  • Rabalais, N.N., Turner, R.E. & Scavia, D., 2002: Beyond science into policy: Gulf of Mexico hypoxia and the Mississippi River. Bioscience52, 129–142.
  • Rine, J.M. & Ginsburg, R.N., 1985: Depositional facies of a mud shoreface in Suriname, South America: a mud analogue to sandy, shallow-marine deposits. Journal of Sedimentary Research55, 633–652.
  • Salmon, V., Derenne, S., Lallier-Vergès, E., Largeau, C. & Beaudoin, B., 2000: Protection of organic matter by mineral matrix in a Cenomanian black shale. Organic Geochemistry31, 463–474.
  • Schieber, J., 1994: Evidence for high-energy events and shallow water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology93, 193–208.
  • Schieber, J., 1999: Microbial mats in terrigenous clastics: the challenges of identification in the rock record. Palaois14, 3–12.
  • Schieber, J., 2011: Reverse engineering Mother Nature–shale sedimentology from an experimental perspective. Sedimentary Geology238, 1–22.
  • Schieber, J., Southard, J.B. & Thaisen, K., 2007: Accretion of mudstone beds from migrating floccule ripples. Science318, 1760–1763.
  • Schieber, J. & Yawar, Z., 2009: A new twist on nud deposition–mud ripples in experiment and rock record. The Sedimentary Record7 (2), 4–8.
  • Schlanger, S.O. & Jenkyns, H.C., 1976: Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw55, 179–184.
  • Schovsbo, N.H., 2001: Why barren intervals? A taphonomic case study of the Scandinavian Alum Shale and its faunas. Lethaia34, 271–285.
  • Schovsbo, N.H., 2002: Uranium enrichment shorewards in black shales: a case study from the Skandinavian Alum Shale. GFF124, 107–115.
  • Schovsbo, N.H., 2003: The geochemistry of Lower Paleozoic sediments deposited on the margins of Baltica. Bulletin of the Geological Society of Denmark50 (1), 11–27.
  • Scupin, H., 1922: Ist der Dictyonemaschiefer eine Tiefseeablagerung?Zeitschrift Deutschen Geologischen Gesellschaft73 (6/7), 153–155.
  • Snäll, S., 1988: Mineralogy and maturity of the alum shales of south-central Jämtland, Sweden. Sveriges Geologiska Undersökning Serie C818, 1–46.
  • Soesoo, A. & Hade, S., 2012: Metalliferous organic-rich shales of Baltoscandia - a future resource or environmental/ecological problem. Archiv Euro Eco2, 11–14.
  • Sumberg, A.I., Urov, K.E. & Aasmäe, E.E., 1990: Characteristic of the Estonian Lower Ordovician fossil organic matter (Maardu member of the Pakerort horizon). Oil Shale7 (3–4), 238–244 (in Russian with English summary).
  • Thickpenny, A., 1987: Palaeooceanography and depositional environment of the Scandinavian Alum shales: sedimentological and geochemical evidence. In J.K.Leggett & G.G.Zuffa (eds.): Marine Clastic Sedimentology–Concepts and Case Studies, 156–171. Graham & Trotman, London.
  • Traykovski, P., Geyer, W.R., Irish, J.D. & Lynch, J.F., 2000: The role of wave-induced density-driven fluid mud flows for cross-shelf transport on the Eel River continental shelf. Continental Shelf Research20, 2113–2140.
  • Tribovillard, N., Algeo, T.J., Lyons, T.W. & Riboulleau, A., 2006: Application of trace metals as paleoredox and paleoproductivity proxies. Chemical Geology232, 12–32.
  • Utsal, K., Kivimägi, E. & Utsal, V., 1982: About method of investigating Estonian graptolithic argillite and its mineralogy. Acta et Commentationes Universitatis Tartuensis527, 116–136. Tartu Riiklik Ülikool, Tartu (in Russian with English summary).
  • Voolma, M., Soesoo, A., Hade, S., Hints, R. & Kallaste, T., 2013: Geochemical heterogeneity of the Estonian graptolite argillite. Oil Shale30 (3), 377–401.
  • Wignall, P.B., 1991: Model for transgressive black shales?Geology19, 167–170.
  • Wignall, P.B., 1994: Black Shales. Geology and Geophysics Monographs 30. Oxford University Press, Oxford. 130 pp.
  • Wignall, P.B. & Newton, R., 2001: Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France. Sedimentary Geology144, 335–356.
  • Wilde, P., Quinby-Hunt, M.S., Berry, W.B.N. & Orth, C.J., 1989: Palaeo-oceanography and biogeography in the Tremadoc (Ordovician) Iapetus Ocean and the origin of the chemostratigraphy of Dictyonema flabelliforme black shales. Geological Magazine126, 19–27.
  • Yao, W. & Millero, F.J., 1995: The chemistry of anoxic waters in the Framvaren Fjord, Norway. Aquatic Geochemistry1 (1), 53–88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.