190
Views
0
CrossRef citations to date
0
Altmetric
Anticancer Original Research Papers

High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination

, ORCID Icon, , , &
Pages 381-390 | Received 08 May 2021, Accepted 17 Nov 2021, Published online: 13 Dec 2021

References

  • Chiusolo P, Giammarco S, Bellesi S, et al. The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue. Cancer Chemother Pharmacol. 2012;69(3):691–696.
  • Howard SC, McCormick J, Pui CH, et al. Preventing and managing toxicities of High-Dose methotrexate. Oncologist. 2016;21(12):1471–1482.
  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619.
  • Suthandiram S, Gan G-G, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15(11):1479–1494.
  • Zhang HN, He XL, Wang C, et al. Impact of SLCO1B1 521T > C variant on leucovorin rescue and risk of relapse in childhood acute lymphoblastic leukemia treated with high-dose methotrexate. Pediatr Blood Cancer. 2014;61(12):2203–2207.
  • Ferrari S, Smeland S, Mercuri M, et al. Neoadjuvant chemotherapy with high-dose ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the italian and scandinavian sarcoma groups. JCO. 2005;23(34):8845–8852.
  • Thomas DA, O'Brien S, Cortes J, et al. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood. 2004;104(6):1624–1630.
  • Wright KD, Panetta JC, Onar-Thomas A, et al. Delayed methotrexate excretion in infants and young children with primary Central nervous system tumors and postoperative fluid collections. Cancer Chemother Pharmacol. 2015;75(1):27–35.
  • Giletti A, Esperon P. Genetic markers in methotrexate treatments. Pharmacogenomics J. 2018;18(6):689–703.
  • Zhao M, Liang L, Ji L, et al. MTHFR gene polymorphisms and methotrexate toxicity in adult patients with hematological malignancies: a meta-analysis. Pharmacogenomics. 2016;17(9):1005–1017.
  • Chang X, Guo Y, Su L, et al. Influence of MTHFR C677T polymorphism on High-Dose Methotrexate-Related toxicity in patients with primary Central nervous system diffuse large B-Cell lymphoma. Clin Lymph Myeloma Leukemia. 2021;21(2):91–96.
  • Choi YJ, Park H, Lee JS, et al. Methotrexate elimination and toxicity: MTHFR 677C > T polymorphism in patients with primary CNS lymphoma treated with high-dose methotrexate. Hematol Oncol. 2017;35(4):504–509.
  • Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: Relationship between plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci. 2020;23(6):800–809.
  • Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet. 2015;58(1):1–10.
  • Maamari D, El-Khoury H, Saifi O, et al. Implementation of pharmacogenetics to individualize treatment regimens for children with acute lymphoblastic leukemia. Pharmgenomics Pers Med. 2020;13:295–317.
  • Gregers J, Green H, Christensen IJ, et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):372–379.
  • Liu S-G, Gao C, Zhang R-D, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017;8(23):37761–37772.
  • Zgheib NK, Akra-Ismail M, Aridi C, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in lebanese children with acute lymphoblastic leukemia. Pharmacogen Genom. 2014;24(8):387–396.
  • Avivi I, Zuckerman T, Krivoy N, et al. Genetic polymorphisms predicting methotrexate blood levels and toxicity in adult non-Hodgkin lymphoma. Leuk Lymphoma. 2014;55(3):565–570.
  • Alabdulwahab AS, Elsayed HG, Sherisher MA, et al. The dana farber consortium protocol (DFCP) vs. classic Hyper-CVAD for treatment of acute lymphoblastic leukemia in patients <50 Y. Single institution experience. Leukemia Research. 2017;60:58–62.
  • Gill S, Lane SW, Crawford J, et al. Prolonged haematological toxicity from the hyper-CVAD regimen: manifestations, frequency, and natural history in a cohort of 125 consecutive patients. Ann Hematol. 2008;87(9):727–734.
  • Hoelzer D, Hiddemann W, Baumann A, et al. High survival rate in adult burkitt’s lymphoma/leukemia and diffuse large B-Cell lymphoma with mediastinal involvement. American Society of Hematology. 2007;110(11):518.
  • Blasco H, Senecal D, Le Gouge A, et al. Influence of methotrexate exposure on outcome in patients treated with MBVP chemotherapy for primary Central nervous system lymphoma. Br J Clin Pharmacol. 2010;70(3):367–375.
  • Yang L, Wu H, de Winter BCM, et al. Pharmacokinetics and pharmacogenetics of high-dose methotrexate in chinese adult patients with non-Hodgkin lymphoma: a population analysis. Cancer Chemother Pharmacol. 2020;85(5):881–897.
  • Tsurusawa M, Mori T, Kikuchi A, for the lymphoma committee of the Japanese Pediatric Leukemia/Lymphoma Study Group, et al. Improved treatment results of children with B-cell non-Hodgkin lymphoma: a report from the japanese pediatric leukemia/lymphoma study group B-NHL03 study. Pediatr Blood Cancer. 2014;61(7):1215–1221.
  • Aumente D, Buelga DS, Lukas JC, et al. Population pharmacokinetics of high-dose methotrexate in children with acute lymphoblastic leukaemia. Clin Pharmacokinet. 2006;45(12):1227–1238.
  • Kennedy JW. Evaluation of Precision Performance of Clinical Chemistry Devices: Tentative Guideline: National Committee for Clinical Laboratory Standards; 1992.
  • Hagleitner MM, Coenen MJ, Aplenc R, et al. The role of the MTHFR 677C > T polymorphism in methotrexate-induced liver toxicity: a Meta-analysis in patients with cancer. Pharmacogenomics J. 2014;14(2):115–119.
  • Green DM, Norkool P, Breslow NE, et al. Severe hepatic toxicity after treatment with vincristine and dactinomycin using single-dose or divided-dose schedules: a report from the national wilms' tumor study. J Clin Oncol. 1990;8(9):1525–1530.
  • Lima A, Bernardes M, Azevedo R, et al. Pharmacogenomics of methotrexate membrane transport pathway: can clinical response to methotrexate in rheumatoid arthritis be predicted? Int J Mol Sci. 2015;16(6):13760–13780.
  • Liu S-G, Yue Z-X, Li Z-G, et al. β-catenin promotes MTX resistance of leukemia cells by down-regulating FPGS expression via NF-κB. Cancer Cell Int. 2020;20(1):1–8.
  • Chen Z-S, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17β-estradiol 17-(β-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res. 2003;63(14):4048–4054.
  • Volk EL, Schneider E. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 2003;63(17):5538–5543.
  • Norris MD, Graaf DD, Haber M, et al. Involvement of MDR1 P‐glycoprotein in multifactorial resistance to methotrexate. Int J Cancer. 1996;65(5):613–619.
  • Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999;59(11):2532–2535.
  • Zeng H, Chen Z-S, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001;61(19):7225–7232.
  • Chen Z-S, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002;62(11):3144–3150.
  • Silverton L, Dean M, Moitra K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease. Drug Metabol Drug Interact. 2011;26(4):169–179.
  • Grabar PB, Logar D, Lestan B, et al. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur J Clin Pharmacol. 2008;64(11):1057–1068.
  • Spyridopoulou KP, Dimou NL, Hamodrakas SJ, et al. Methylene tetrahydrofolate reductase gene polymorphisms and their association with methotrexate toxicity: a meta-analysis. Pharmacogen Genom. 2012;22(2):117–133.
  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. A systematic review and Meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013;13(6):498–506.
  • Cerminara Z, Duffy A, Nishioka J, et al. A single center retrospective analysis of a protocol for high-dose methotrexate and leucovorin rescue administration. J Oncol Pharm Pract. 2019;25(1):76–84.
  • Erculj N, Kotnik BF, Debeljak M, et al. Influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(6):1096–1104.
  • Kantar M, Kosova B, Cetingul N, et al. Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma. 2009;50(6):912–917.
  • Shimasaki N, Mori T, Samejima H, et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol. 2006;28(2):64–68.
  • Imanishi H, Okamura N, Yagi M, et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J Hum Genet. 2007;52(2):166–171.
  • Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity. Blood. 2007;109(10):4151–4157.
  • Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a Meta-analysis. Tumour Biol. 2012;33(5):1445–1454.
  • Ruiz-Arguelles GJ, Coconi-Linares LN, Garces-Eisele J, et al. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico. Hematology. 2007;12(5):387–391.
  • Eissa DS, Ahmed TM. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia. Blood Coagul Fibrinolysis. 2013;24(2):181–188.
  • El-Hawy M, Ragab S, Dawood A, et al. Relationship between MTHFR polymorphism and side effects of high-dose methotrexate in pediatric acute lymphoblastic leukemia. Menoufia Med J. 2013;26(2):138.
  • El-Khodary NM, El-Haggar SM, Eid MA, et al. Study of the pharmacokinetic and pharmacogenetic contribution to the toxicity of high-dose methotrexate in children with acute lymphoblastic leukemia. Med Oncol. 2012;29(3):2053–2062.
  • Tantawy AA, El-Bostany EA, Adly AA, et al. Methylene tetrahydrofolate reductase gene polymorphism in egyptian children with acute lymphoblastic leukemia. Blood Coagul Fibrinol Int J Haemostas Thrombos. 2010;21(1):28–34.
  • Bradstock KF, Matthews JP, Lowenthal RM, Australasian Leukaemia and Lymphoma Group, et al. A randomized trial of high-versus conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing high-dose cytarabine. Blood. 2005;105(2):481–488.
  • Saghir NSE, Hawkins KA. Hepatotoxicity following vincristine therapy. Cancer. 1984;54(9):2006–2008.
  • Goekbuget N, Baumann A, Beck J, et al. PEG-asparaginase intensification in adult acute lymphoblastic leukemia (ALL): significant improvement of outcome with moderate increase of liver toxicity in the german multicenter study group for adult ALL (GMALL) study 07/2003. Blood. 2010;116(21):494–494.
  • Sahoo S, Hart J, editors. Histopathological features of L-asparaginase-induced liver disease. Seminars in liver disease. 2003. Thieme Medical Publishers, Inc., New York.
  • Falkson G, Klein B, Falkson H. Hematological toxicity: experience with anthracyclines and anthracenes. Exp Hematol. 1985;13:64–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.