135
Views
0
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Papers

In vitro killing of multidrug/extensively drug-resistant Pseudomonas aeruginosa by fosfomycin alone or in combination with antipseudomonal antibiotics

ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 219-230 | Received 29 Jan 2022, Accepted 27 Jul 2022, Published online: 09 Aug 2022

References

  • Pagani L, Mantengoli E, Migliavacca R, et al. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the per-1 extended-spectrum β-lactamase in Northern Italy. J Clin Microbiol. 2004;42(6):2523–2529.
  • Tümmler B. Emerging therapies against infections with Pseudomonas aeruginosa. F1000Res. 2019;8:1371.
  • Aloush V, Navon-Venezia S, Seigman-Igra Y, et al. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43–48.
  • Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002;34(5):634–640.
  • Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65.
  • Pournaras S, Maniati M, Spanakis N, et al. Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother. 2005;56(4):761–764.
  • Walsh CC, Landersdorfer CB, McIntosh MP, et al. Clinically relevant concentrations of fosfomycin combined with polymyxin B, tobramycin or ciprofloxacin enhance bacterial killing of Pseudomonas aeruginosa, but do not suppress the emergence of fosfomycin resistance. J Antimicrob Chemother. 2016;71(8):2218–2229.
  • Samonis G, Maraki S, Karageorgopoulos DE, et al. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis. 2012;31(5):695–701.
  • Walsh CC, McIntosh MP, Peleg AY, et al. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 2015;70(11):3042–3050.
  • Memar Y, Adibkia M, Farajnia K, et al. In-vitro effect of imipenem, fosfomycin, colistin, and gentamicin combination against carbapenem-resistant and biofilm-forming Pseudomonas aeruginosa isolated from burn patients. Iran J Pharm Res. 2021;20(2):286–296.
  • Avery LM, Sutherland CA, Nicolau DP. Prevalence of in vitro synergistic antibiotic interaction between fosfomycin and nonsusceptible antimicrobials in carbapenem-resistant Pseudomonas aeruginosa. J Med Microbiol. 2019;68(6):893–897.
  • Buisson Y, Bercion R, Mauclère P, et al. Preliminary study of the antagonistic effects between fosfomycin and beta-lactams on Pseudomonas aeruginosa observed on the antibiogram. Pathol Biol (Paris). 1988;36(5 Pt 2):671–674.
  • Reguera JA, Baquero F, Berenguer J, et al. Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990;34(11):2093–2096.
  • Pruekprasert P, Tunyapanit W. In vitro activity of fosfomycin-gentamicin, fosfomycin-ceftazidime, fosfomycin-imipenem and ceftazidime-gentamicin combinations against ceftazidime-resistant Pseudomonas aeruginosa. Southeast Asian J Trop Med Public Health. 2005;36(5):1239–1242.
  • Cuba GT, Rocha-Santos G, Cayô R, et al. In vitro synergy of ceftolozane/tazobactam in combination with fosfomycin or aztreonam against MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2020;75(7):1874–1878.
  • Kastoris AC, Rafailidis PI, Vouloumanou EK, et al. Synergy of fosfomycin with other antibiotics for gram-positive and gram-negative bacteria. Eur J Clin Pharmacol. 2010;66(4):359–368.
  • Drusano GL, Neely MN, Yamada WM, et al. The combination of fosfomycin plus meropenem is synergistic for Pseudomonas aeruginosa PAO1 in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62(12):18. e01682
  • MacLeod DL, Velayudhan J, Kenney TF, et al. Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2012;56(3):1529–1538.
  • MacLeod DL, Barker LM, Sutherland JL, et al. Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J Antimicrob Chemother. 2009;64(4):829–836.
  • Yamada S, Hyo Y, Ohmori S, et al. Role of ciprofloxacin in its synergistic effect with fosfomycin on drug-resistant strains of Pseudomonas aeruginosa. Chemotherapy. 2007;53(3):202–209.
  • Figueredo VM, Neu HC. Synergy of ciprofloxacin with fosfomycin in vitro against Pseudomonas isolates from patients with cystic fibrosis. J Antimicrob Chemother. 1988;22(1):41–50.
  • Antonello RM, Principe L, Maraolo AE, et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies. Antibiotics. 2020;9(8):500.
  • Monogue ML, Nicolau DP. Antibacterial activity of ceftolozane/tazobactam alone and in combination with other antimicrobial agents against MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;1:942–952.
  • Jahan S, Davis H, Ashcraft DS, et al. Evaluation of the in vitro interaction of fosfomycin and meropenem against metallo-β-lactamase–producing Pseudomonas aeruginosa using etest and time-kill assay. J Investig Med. 2021;69(2):371–376.
  • Mikhail S, Singh NB, Kebriaei R, et al. Evaluation of the synergy of Ceftazidime-Avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63(8):e00779–19.
  • Papp-Wallace KM, Zeiser ET, Becka SA, et al. Ceftazidime-Avibactam in combination with fosfomycin: a novel therapeutic strategy against multidrug-resistant Pseudomonas aeruginosa. J Infect Dis. 2019;220(4):666–676.
  • Olsson A, Wistrand-Yuen P, Nielsen EI, et al. Efficacy of antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in automated time-lapse microscopy and static time-kill experiments. Antimicrob Agents Chemother. 2020;64(6):e02111. 19.
  • Avery LM, Nicolau DP. Feasibility of routine synergy testing using antibiotic gradient diffusion strips in the clinical laboratory. J Antimicrob Chemother. 2018;73(8):2264–2265.
  • White RL, Burgess DS, Manduru M, et al. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 1996;40(8):1914–1918.
  • Brennan-Krohn T, Kirby JE. Antimicrobial synergy testing by the inkjet printer-assisted automated checkerboard array and the manual time-kill method. J Vis Exp. 2019;14:e58636.
  • Giamarellos-Bourboulis EJ, Kentepozidis N, Antonopoulou A, et al. Postantibiotic effect of antimicrobial combinations on multidrug-resistant Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2005;51(2):113–117.
  • Sardelic S, Bedenic B, Colinon-Dupuich C, et al. Infrequent finding of Metallo-Lactamase VIM-2 in carbapenem-resistant Pseudomonas aeruginosa strains from Croatia. Antimicrob Agents Chemother. 2012;56(5):2746–2749.
  • CLSI. Performance standards for antimicrobial susceptibility testing, document M100. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
  • López-Montesinos I, Horcajada JP. Oral and intravenous fosfomycin in complicated urinary tract infections. Rev Esp Quimioter. 2019;32:37–44.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281.
  • Mirsalehian A, Kalantar-Neyestanaki D, Nourijelyani K, et al. Detection of AmpC-β-lactamases producing isolates among carbapenem resistant P. aeruginosa isolated from burn patient. Iran J Microbiol. 2014;6(5):306–310.
  • CLSI. Performance standards for antimicrobial susceptibility testing, document M100. 27th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
  • van der Zwaluw K, de Haan A, Pluister GN, et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10(3):e0123690.
  • Franklin C, Liolios L, Peleg AY. Phenotypic detection of carbapenem-susceptible metallo-lactamase-producing gram-negative bacilli in the clinical laboratory. J Clin Microbiol. 2006;44(9):3139–3144.
  • Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J Lab Phys. 2017;9(4):249–253.
  • Mazzariol A, Mammina C, Koncan R, et al. A novel VIM-type metallo-beta-lactamase (VIM-14) in a Pseudomonas aeruginosa clinical isolate from a neonatal intensive care unit. Clin Microbiol Infect. 2011;17(5):722–724.
  • Bosnjak Z, Bedenić B, Mazzariol A, et al. VIM-2 beta-lactamase in Pseudomonas aeruginosa isolates from zagreb, Croatia. Scand J Infect Dis. 2010;42(3):193–197.
  • Bubonja-Sonje M, Matovina M, Skrobonja I, et al. Mechanisms of carbapenem resistance in multidrug-resistant clinical isolates of Pseudomonas aeruginosa from a Croatian hospital. Microb Drug Resist. 2015;21(3):261–269.
  • Poirel L, Nordmann P. Acquired carbapenem-hydrolyzing beta-lactamases and their genetic support. Curr Pharm Biotechnol. 2002;3(2):117–127.
  • Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52(12):4124–4128.
  • FDA. Ceptaz (ceftazidime for injection) [Internet]. England, GlaxoSmithKline, Research Triangle Park, NC 27709; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/050646s014lbl.pdf.
  • FDA. Gentamicin injection [Internet]. Fresenius Kabi USA, LCC. 2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/062366s033lbl.pdf.
  • FDA. Amikacin Sulfate [Internet]. Abbott laboratories, North Chicago, IL 60064, USA; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/97/64146AP.PDF.
  • FDA. Primaxin (imipenem and cilastatin) for injection, for intravenous use [Internet]. Merck&Co., Inc.Whitehouse Station, NJ. USA. 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050587s074lbl.pdf.
  • Car H. In vitro synergy and postantibiotic effect of colistin combinations with meropenem and vancomycin against gram negative bacteria with multiple carbapenem resistance mechanisms. Vol. 198. Osijek, Croatia: Josip Juraj Strossmayer Univ Osijek; 2020.
  • Markou N, Markantonis SL, Dimitrakis E, et al. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, gram-negative bacilli infections: a prospective, open-label, uncontrolled study. Clin Ther. 2008;30(1):143–151.
  • Moni M, Sudhir S, Dipu TS, et al. Clinical efficacy and pharmacokinetics of colistimethate sodium and colistin in critically ill patients in an indian hospital with high endemic rates of multidrug-resistant gram-negative bacterial infections: a prospective observational study. Int J Infect Dis. 2020;100:497–506.
  • Tängdén T, Hickman RA, Forsberg P, et al. Evaluation of double-and triple-antibiotic combinations for VIM-and NDM-Producing Klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58(3):1757–1762.
  • Silva F, Lourenço O, Queiroz JA, et al. Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel far-red dye. J Antibiot (Tokyo). 2011;64(4):321–325.
  • Jacqueline C, Caillon J, Le Mabecque V, et al. In vitro activity of linezolid alone and in combination with gentamicin, vancomycin or rifampicin against methicillin-resistant Staphylococcus aureus by time-kill curve methods. J Antimicrob Chemother. 2003;51(4):857–864.
  • Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis. 1981;3(1):28–37.
  • Craig WA. The postantibiotic effect. Clin Microbiol Newsl. 1991;13(16):121–124.
  • Munckhof WJ, Borlace G, Turnidge JD. Postantibiotic suppression of growth of erythromycin A-susceptible and-resistant gram-positive bacteria by the ketolides telithromycin (HMR 3647) and HMR 3004. Antimicrob Agents Chemother. 2000;44(6):1749–1753.
  • Bedenić B, Beader N, Godič-Torkar K, et al. Postantibiotic effect of colistin alone and combined with vancomycin or meropenem against Acinetobacter spp. with well defined resistance mechanisms. J Chemother. 2016;28(5):375–382.
  • Li RC, Tang MC. Post-antibiotic effect induced by an antibiotic combination: influence of altered susceptibility to individual components. J Antimicrob Chemother. 2005;55(4):583–586.
  • Ferrara A, Santos C, Dos Cimbro M, et al. Postantibiotic effect of meropenem in combination with gentamicin or sparfloxacin on gram-positive and gram-negative organisms. Clin Microbiol Infect. 1998;4(8):431–435.
  • Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci. 2018;6:1.
  • Di X, Wang R, Liu B, et al. In vitro activity of fosfomycin in combination with colistin against clinical isolates of carbapenem-resistant pseudomas aeruginosa. J Antibiot (Tokyo). 2015;68(9):551–555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.