591
Views
8
CrossRef citations to date
0
Altmetric
Articles

Do habitat features affect the composition of silk proteins by Namibian arid-adapted Ariadna spiders (Araneae: Segestriidae)?

, , , , &
Pages 48-60 | Received 06 May 2014, Accepted 01 Oct 2014, Published online: 31 Oct 2014

References

  • Agnew ADQ. 1997. Swiches, pulses and grazing in arid vegetation. Journal of Arid Environments 37:609–617. doi:10.1006/jare.1997.0304.
  • Andersen SO. 1970. Amino acid composition of spider silks. Comparative Biochemistry and Physiology 35:705–711. doi:10.1016/0010-406X(70)90988-6.
  • Augsten K, Mühlig P, Herrmann C. 2000. Glycoproteins and skin-core structure in Nephila clavipes spider silk observed by light and electron microscopy. Scanning 22:12–15. doi:10.1002/sca.4950220103.
  • Beckwitt R, Arcidiacono S. 1994. Sequence conservation in the C-terminal region of spider silk proteins (spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). Journal of Biological Chemistry 269:6661–6663.
  • Bich C, Zenobi R. 2009. Mass spectrometry of large complexes. Current Opinion in Structural Biology 19:632–639. doi:10.1016/j.sbi.2009.08.004.
  • Blackledge TA, Hayashi CY. 2006. Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). Journal of Experimental Biology 209:2452–2461. doi:10.1242/jeb.02275.
  • Blackledge TA, Kuntner M, Marhabaie M, Leeper TC, Agnarsson I. 2012. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spiders webs. Scientific Reports 2:833.
  • Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I. 2009. Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences 106:5229–5234.
  • Blamires SJ, Wu C-L, Tso I-M. 2012. Variation in protein intake induces variation in spider silk expression. Plos One 7:e31626–9. doi:10.1371/journal.pone.0031626.
  • Blondelle SE, Forood B, Houghten RA, Pérez-Payá E. 1997. Polyalanine-based peptides as models for self-associated β-pleated-sheet complexes. Biochemistry 36:8393–8400. doi:10.1021/bi963015b.
  • Bramanti E, Catalano D, Forte C, Giovanneschi M, Masetti M, Veracini C A. 2005. Solid state 13C NMR and FT-IR spectroscopy of the cocoon silk of two common spiders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62:105–111. doi:10.1016/j.saa.2004.12.008.
  • Chen F, Gerber S, Heuser K, Korkhov VM, Lizak C, Mireku S, Locher KP, Zenobi R. 2013. High-mass matrix-assisted laser desorption ionization-mass spectrometry of integral membrane proteins and their complexes. Analytical Chemistry 85:3483–3488. doi:10.1021/ac4000943.
  • Conti E, Costa G. 2004. La costruzione della tana in Ariadna sp., ragno segestriide vivente in pianure ghiaiose del Namib Desert. 65° Congresso Unione Zoologica Italiana:30.
  • Conti E, Costa G, Montesanto G, Patané MG, Torre F, Lombardo BM. 2004. Analisi del differenziamento genetico in popolazioni namibiane di ragni Segestriidi del genere Ariadna, mediante MLEE e RAPD-PCR (Arachnida, Araneae). 64° Congresso Unione Zoologica Italiana:108. Taormina, Giardini Naxos (ME), 21–25 September 2004.
  • Costa G. 1995. Behavioural adaptations of desert animals. Berlin, Heidelberg: Springer Verlag. doi:10.1007/978-3-642-79356-1.
  • Costa G, Conti E. 2013. Opening and closing of burrows by the Namibian spider Ariadna sp. (Araneae: Segestriidae) in a year of heavy rainfall. Journal of Arachnology 41:215–218. doi:10.1636/Hi13-04.1.
  • Costa G, Petralia A, Conti E. 2000. Population dynamics of stone-ring spiders of the genus Ariadna Audoin (Araneae: Segestriidae), in western Namibia. Cimbebasia 16:223–229.
  • Costa G, Petralia A, Conti E, Hänel C. 1995. A ‘mathematical’ spider living on gravel plains of the Namib Desert. Journal of Arid Environments 29:485–494. doi:10.1016/S0140-1963(95)80020-4.
  • Costa G, Petralia A, Conti E, Hänel C, Seely MK. 1993. Seven stone spiders on the gravel plains of the Namib Desert. Bollettino dell’Accademia Gioenia di Scienze Naturali in Catania 26:77–83.
  • Craig CL, Riekel C, Herberstein ME, Weber RS, Kaplan D, Pierce NE. 2000. Evidence for diet effects on the composition of silk proteins produced by spiders. Molecular Biology and Evolution 17:1904–1913. doi:10.1093/oxfordjournals.molbev.a026292.
  • Denny MW. 1976. The physical properties of spider’s silk and their role in the design of orb-webs. Journal of Experimental Biology 65:483–506.
  • Dippenaar-Schoeman AS, Jocqué R. 1997. African spiders. An identification manual. Pretoria: ARC-Plant Protection Research Institute Handbook No.9.
  • Domon B, Aebersold R. 2006. Mass spectrometry and protein analysis. Science 312:212–217. doi:10.1126/science.1124619.
  • Frische S, Maunsbach AB, Vollrath F. 1998. Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. Journal of Microscopy 189:64–70. doi:10.1046/j.1365-2818.1998.00285.x.
  • Gaines WA, Marcotte Jr WR. 2008. Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. Insect Molecular Biology 17:465–474. doi:10.1111/j.1365-2583.2008.00828.x.
  • Garb JE, Di Mauro T, Vo V, Hayashi CY. 2006. Silk genes support the single origin of orb-webs. Science 312:1762.
  • Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R. 2001. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605.
  • Ghosh T, Garde S, García AE. 2003. Role of backbone hydration and salt-bridge formation in stability of α-helix in solution. Biophysical Journal 85:3187–3193. doi:10.1016/S0006-3495(03)74736-5.
  • Gosline JM, Demont ME, Denny M. 1986. The structure and properties of spider silks. Endeavour 10:37–43. doi:10.1016/0160-9327(86)90049-9.
  • Hajer J, Malý J, Řeháková D. 2013. Silk fibers and silk-producing organs of Harpactea rubicunda (C. L. Koch 1838) (Araneae, Dysderidae). Microscopy Research and Technique 76:28–35. doi:10.1002/jemt.22131.
  • Henschel JR. 1995. Tool use by spiders: Stone selection and placement by Corolla Spiders Ariadna (Segestriidae) of the Namib Desert. Ethology 101:187–199. doi:10.1111/j.1439-0310.1995.tb00357.x.
  • Higgins L, Rankin MA. 1999. Nutritional requirements for web synthesis in the tetragnathid spider Nephila clavipes. Physiological Entomology 24:263–270. doi:10.1046/j.1365-3032.1999.00135.x.
  • Hinman MB, Lewis RV. 1992. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two protein fiber. Journal of Biological Chemistry 267:19320–19324.
  • Hsia Y, Gnesa E, Jeffery F, Tang S, Craig Vierra C. 2011. Spider silk composites and applications. In: Cuppoletti J, editor. Metal, ceramic and polymeric composites for various uses. InTech. pp. 303–324. Available: http://www.intechopen.com/books/metal-ceramic-and-polymeric-composites-for-various-uses/spider-silk-composites-and-applications.
  • Jackson M, Mantsch HH. 1995. The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology 30:95–120. doi:10.3109/10409239509085140.
  • Jürgens N, Burke A, Seely MK, Jacobsen KM. 1997. The Namib Desert. In: Cowling RM, Richardson D, editors. Vegetation of Southern Africa. Cambridge: University Press. pp. 189–214.
  • Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. 2008. Spider silks and their applications. Trends in Biotechnology 26:244–251. doi:10.1016/j.tibtech.2008.02.006.
  • Lefèvre T, Boudreault S, Cloutier C, Pézolet M. 2008. Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders. Biomacromolecules 9:2399–2407. doi:10.1021/bm800390j.
  • Lorusso M, Pepe A, Ibris N, Bochicchio B. 2011. Molecular and supramolecular studies on polyglycine and poly-L-proline. Soft Matter 7:6327–6336. doi:10.1039/c1sm05726j.
  • Montaudo G, Montaudo MS, Samperi F. 2002. Matrix-assisted laser desorption ionization/mass spectrometry of polymers MALDI-MS. In: Montaudo G, Lattimer RP, editors. Mass spectrometry of polymers. Boca Ratón: CRC Press. pp. 419–521.
  • Montaudo G, Samperi F, Montaudo MS. 2006. Characterization of synthetic polymers by MALDI-MS. Progress in Polymer Science 31:277–357. doi:10.1016/j.progpolymsci.2005.12.001.
  • Moore WH, Krimm S. 1976. Vibrational analysis of peptides, polypeptides, and proteins. II. β-Poly(L-alanine) and β-poly(L-alanylglycine). Biopolymers 15:2465–2483. doi:10.1002/bip.1976.360151211.
  • Opell BD, Lipkey GK, Hendricks ML, Vito ST. 2009. Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb webs. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 311A:217–225. doi:10.1002/jez.526.
  • Papadopoulos P, Sölter J, Kremer F. 2007. Structure property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. The European Physical Journal E 24:193–199. doi:10.1140/epje/i2007-10229-9.
  • Platnick NI. 2013. The world spider catalog, version 14.0. American Museum of Natural History. Available: http://research.amnh.org/entomology/spiders/catalog/index.html DOI: 10.5531/db.iz.0001. Jul 2013.
  • Romer L, Scheibel T. 2008. The elaborate structure of spider silk. Landes Bioscience 2:154–161.
  • Savage KN, Gosline JM. 2008. The role of proline in the elastic mechanism of hydrated spider silks. Journal of Experimental Biology 211:1948–1957. doi:10.1242/jeb.014225.
  • Schulz S. 2001. Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647. doi:10.1007/s11745-001-0768-7.
  • Seely MK. 1987. The Namib. Natural history of an ancient desert. Windhoek, Namibia: Shell Oil, S.W.A., Ltd.
  • Shanyengana ES, Henschel JR, Seely MK, Sanderson RD. 2002. Exploring fog as a supplementary water source in Namibia. Atmospheric Research 64:251–259. doi:10.1016/S0169-8095(02)00096-0.
  • Simmons AH, Michal CA, Jelinski LW. 1996. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271:84–87. doi:10.1126/science.271.5245.84.
  • Tai P-L, Hwang G-Y, Tso I-M. 2004. Inter-specific sequence conservation and intra-individual sequence variation in a spider silk gene. International Journal of Biological Macromolecules 34:295–301.
  • Vasanthavada K, Hu X, Falick AM, La Mattina C, Moore AMF, Jones PR, Yee R, Reza R, Tuton T, Vierra C. 2007. Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. The Journal of Biological Chemistry 282:35088–35097. doi:10.1074/jbc.M705791200.
  • Viles HA. 2005. Microclimate and weathering in the central Namib Desert, Namibia. Geomorphology 67:189–209. doi:10.1016/j.geomorph.2004.04.006.
  • Vollrath F, Knight DP. 1999. Structure and function of the silk production pathway in the spider Nephila edulis. International Journal of Biological Macromolecules 24:243–249. doi:10.1016/S0141-8130(98)00095-6.
  • Weidmann S, Mikutis G, Barylyuk K, Zenobi R. 2013. Mass discrimination in high-mass MALDI-MS. Journal of the American Society for Mass Spectrometry 24:1396–1404. doi:10.1007/s13361-013-0686-x.
  • Wentworth K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30:377–392. doi:10.1086/622910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.