407
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Carbon and nitrogen stock in deadwood biomass in natural temperate forest along a soil moisture gradient

, &
Pages 213-221 | Received 17 Apr 2018, Accepted 11 Feb 2019, Published online: 29 Mar 2019

References

  • Baldrian P, Zrůstová P, Tláskal V, Davidová A, Merhautová V, Vrška T. 2016. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23:109–122.
  • Barker JS. 2008. Decomposition of Douglas-fir coarse woody debris in response to differing moisture content and initial heterotrophic colonization. For Ecol Manage. 255(3-4):598–604.
  • Blanchette RA. 1991. Delignification by wood-decay fungi. Annu Rev Phytopathol. 29(1):381–398.
  • Błońska E, Lasota J. 2017. Soil organic matter accumulation and carbon fractions along a moisture gradient of forest soils. Forests. 8(448):1–13.
  • Błońska E, Kacprzyk M, Spólnik A. 2017. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecol Res. 32(2):193–203.
  • Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 29(4):795–811.
  • Boulanger Y, Sirois L. 2006. Postfire dynamics of black spruce coarse woody debris in northern boreal forest of Quebec. Can J For Res. 36(7):1770–1780.
  • Branquart E, Verheyen K, Latham J. 2008. Selection criteria of protected forest areas in Europe: the theory and the real world. Biol Conservation. 141(11):2795–2806.
  • Bruchwald A. 1999. Dendrometria. Warszawa: SGGW.
  • Bujoczek L, Szewczyk J, Bujoczek M. 2018. Deadwood volume in strictly protected, natural, and primeval forests in Poland. Eur J Forest Res . 137(4):401–418.
  • Chen H, Harmon ME, Griffiths RP, Hicks W. 2000. Effects of temperature and moisture on carbon respired from decomposing woody roots. For Ecol Manage. 138(1–3):51–64.
  • Christensen M, Hahn K, Mountford EP, Ódor P, Standovár T, Rozenbergar D, Diaci J, Wijdeven S, Meyer P, Winter S, Vrska T. 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. For Ecol Manage. 210(1-3):267–282.
  • Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen K, van Logtestijn RSP, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RKWM, Freschet GT, et al. 2012. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. AMBIO 41(S3):231–245.
  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE. 2009. Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Chang Biol. 15(10):2431–2449.
  • Czerepko J, Hilszczański J, Jabłoński M. 2014. Deadwood – a living problem. Stud Mater CEPL w Rogowie. Vol. 41; p. 36–45.
  • Czuraj M, Radwański B, Strzemeski S. 1960. Tablice miąższości drzew stojących. Warszawa: PWRiL.
  • Edmonds RL. 1991. Organic matter decomposition in western United States forests. Proceedings, Management and Productivity of Western-Montane Forest Soils, 10–12 Apr. 1990, Boise, Idaho. Compiled by A.E. Harvey and L.E. Neuenschwander. USDA For. Serv. Gen. Tech. Rep. INT-280; p. 118–125.
  • Fan Y, Miquez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C. 2017. Hydrologic regulation of plant rooting depth. PNAS. 114(40):10572–10577.
  • Fravolini G, Egli M, Derungs C, Cherubini P, Ascher-Jenull J, Gómez-Brandón M, Bardelli T, Tognetti R, Lombardi F, Marchetti M. 2016. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests. Sci Total Environ. 569–570:1064–1076.
  • Fravolini G, Tognetti R, Lombardi F, Egli M, Ascher-Jenull J, Arfaioli P, Bardelli T, Cherubini P, Marchetti M. 2018. Quantifying decay progression of deadwood in Mediterranean mountain forests. Forest Ecol Manage. 408:228–237.
  • Gough CM, Vogel CS, Kazanski C, Nagel L, Flower CE, Curtis PS. 2007. Coarse woody debris and the carbon balance of a north temperate forest. For Ecol Manage. 244(1-3):60–67.
  • Harmon ME, Krankina ON, Sexton J. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res. 30(1):76–84.
  • Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res. 15:133–302.
  • Herrmann S, Bauhus J. 2013. Effect of moisture, temperature and decomposition stage on respirational carbon loss from coarse woody debris (CWD) of important European tree species. Scandinavian J Forest Res. 28(4):346–357.
  • Herrmann S, Kahl T, Bauhus J. 2015. Decomposition dynamics of coarse woody debris of three important central European tree species. For Ecosyst. 2:27.
  • Holeksa J. 2001. Coarse woody debris in a Carpathian subalpine spruce forest. Forstw Cbl. 120(1-6):256–270.
  • Imada S, Yamanaka N, Tamai S. 2008. Water table depth affects Populus alba fine root growth and whole plant biomass. Funct Ecol. 22(6):1018–1026.
  • Inventory Result in Puszcza Białowieska. 2017. Państwowe Gospodarstwo Leśne Lasy Państwowe (in Polish).
  • Jonsson BG, Ekström M, Esseen P-A, Grafström A, Ståhl G, Westerlund B. 2016. Dead wood availability in managed Swedish forests – policy outcomes and implications for biodiversity. For Ecol Manage. 376:174–182.
  • Kahl T, Mund M, Bauhus J, Detlef SE. 2012. Dissolved organic carbon from European beech logs: patterns of input to and retention by surface soil. Ecoscience. 19:1–10.
  • Kahl T, Baber K, Otto P, Wirth C, Bauhus J. 2015. Drivers of CO2 emission rates from dead wood logs of 13 tree species in the initial decomposition phase. Forests. 6(12):2484–2504.
  • Keren S, Diaci J. 2018. Comparing the quantity and structure of deadwood in selection managed and old-growth forests in South-east Europe. Forests. 9(2):76.
  • Kimmins JP. 2004. Forest ecology – a foundation for sustainable management. 3rd ed. Upper Saddle River, NJ: Prentice-Hall; p. 611.
  • Kołwzan B, Adamiak W, Grabas K, Pawełczyk A. 2005. Podstawy mikrobiologii w ochronie środowiska. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • Kowalkowski A, Czarnota K. 1962. Badania nad rozmieszczeniem systemów korzeniowych dębu, buka, sosny i świerka w glebach murszastych leśnictwa Dębina. Roczniki Gleboznawcze. 12:237–255.
  • Kukumägi M, Ostonen I, Kupper P, Truu M, Tulva I, Varik M, Aosaar J, Sõber J, Lõhmus K. 2014. The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agr Forest Meteorol. 194:167–174.
  • Kupferschmidt AD, Brang P, Schönenberger W, Bugmann H. 2003. Decay of Picea abies snags stands on steep mountain slopes. Forest Chron. 79:1–6. DOI: 10.5558/tfc79247-2.
  • Larsen MJ, Harvey AE, Jurgensen MF. 1980. Residue decay processes and associated environmental functions in northern Rocky Mountain Forests. In: Environmental consequence of timber harvesting in Rocky Mountain Coniferous Forests. USDA For Serv Gen Tech Rep. Vol. 90, pp. 157–194.
  • Liu P, Huang J, Han X, Sun OJ, Zhou Z. 2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia. Apple Soil Ecol. 34(2–3):266–275.
  • Lombardi F, Cherubini P, Lasserre B, Tognetti R, Marchetti M. 2008. Tree rings used to assess time since death of deadwood of different decay classes in beech and silver fir forests in the central Apennines (Molise, Italy). Can J For Res. 38(4):821–833.
  • Magnússon RÍ, Tietema A, Cornelissen JHC, Hefting MM, Kalbitz K. 2016. Sequestration of carbon from coarse woody debris in forest soils. For Ecol Manag. 377:1–15.
  • Maser C, Anderson RG, Cromak K, Williams JT, Martin RE. 1979. Dead and down woody material. In: Thomas JW, editor. Wildlife habitats in managed forests: the blue mountains of Oregon and Washington. USDA Forest Service Agricultural Handbook No 553. Poland, OR: U.S. Department of Agriculture, Pacific Northwest Forest and Range Experiment Station; p. 78–95.
  • Müller J, Strätz C, Hothorn T. 2005. Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. Eur J Forest Res. 124(3):233–242.
  • Nicholas DD, Crawford D. 2003. Concepts in the development of new accelerated test methods for wood decay. In: Goodell B, Nicholas DD, Schultz TP, editors. Wood deterioration and preservation. Advances in our changing world. Washington, DC: American Chemical Society; p. 288–312.
  • Oberle B, Ogle K, Zanne AE, Woodall CW. 2018. When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS One. 13(5):e0196712.
  • Oberle B, Covey KR, Dunham KM, Hernandez EJ, Walton ML, Young DF, Zanne AE. 2018. Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana. Ecosystems. 21(1):85–97.
  • Oheimb G, Westphal C, Härdtle W. 2007. Diversity and spatio-temporal dynamics of dead wood in a temperate near-natural beech forest (Fagus sylvatica). Eur J Forest Res. 126:359–370.
  • Olajuyigbe S, Tobin B, Nieuwenhuis M. 2012. Temperature and moisture effects on respiration rate of decomposing logs in a Sitka spruce plantation in Ireland. Forestry. 85(4):485–496.
  • Parviainen J, Västilä S. 2011. State of Finland´ s Forests 2011 - Based on the Criteria and Indicators of Sustainable Forest Management. Ministry of Agriculture and Forestry and Finnish Forest Research Institute (Metla).
  • Pawicka K, Woziwoda B. 2011. Balance of dead wood in the 'Polesie Konstantynowskie' nature reserve (central Poland). Sylwan. 155(12):851–858.
  • Persiani AM, Audisio P, Lunghini D, Maggi O, Granito VM, Biscaccianti AB, Chiavetta U, Marchetti M. 2010. Linking taxonomical and functional biodiversity of saproxylic fungi and beetles in broad-leaved forests in southern Italy with varying management histories. Plant Biosyst. 144(1):250–261.
  • Purahong W, Wubet T, Lentendu G, Hoppe B, Jariyavidyanont K, Arnstadt T, Baber K, Otto P, Kellner H, Hofrichter M, et al. 2018. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment. Front Microbiol. 9:2120.
  • Radu S. 2007. The ecological role of deadwood in natural forests, In: D. Gafta, J. Akeroyd, editors. Nature conservation: concept and practice. Berlin: Springer; p. 137–141
  • Rajala T, Peltoniemi M, Pennanen T, Mäkipää R. 2012. Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol Ecol. 81(2):494–505.
  • Sakai Y, Ugawa S, Ishizuka S, Takahashi M, Takenaka C. 2012. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japanica. Soil Sci Plant Nutr. 58(4):526–537.
  • Siitonen J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull. 49:11–41. DOI: 10.2307/20113262.
  • Stokland J, Siitonen J, Jonsson BG. 2012. Biodiversity in dead wood. Cambridge: Cambridge University Press.
  • Strukelj M, Brais S, Quideau SA, Angers V, Kebli H, Drapeau P, Oh SW. 2013. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Can J For Res. 43(9):785–798.
  • Woodall CW, Liknes GC. 2008. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States. Carbon Balance Manag. 3:5.
  • WRB (World Reference Base For Soil Resource) 2014. FAO, ISRIC and ISSS.
  • Wu J, Zhang X, Wang H, Sun J, Guan D. 2010. Respiration of downed logs in an old-growth temperate forest in north-eastern China. Scand J Forest Res. 25(6):500–506.
  • Van der Wal A, de Boer W, Smant W, van Veen JA. 2007. Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant Soil. 301(1–2):189–201.
  • Vogt K. 1991. Carbon budgets of temperate forest ecosystems. Tree Physiol. 9(1_2):69–86.
  • Xu X, Zhang Q, Tan Z, Li Y, Wang X. 2015. Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China. Chin Geogr Sci. 25(6):739.
  • Yin X. 1999. The decay of forest woody debris: numerical modeling and implications based on some 300 data cases from North America. Oecologia. 121(1):81–98.
  • Yuan J, Zheng X, Cheng F, Zhu X, Hou L, Li J, Zheng S. 2017. Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China. Sci Reports. 7:13866. DOI: 10.1038/s41598-017-14425-6.
  • Zell J, Kändler G, Hanewinkel M. 2009. Predicting constant decay rates of coarse woody debris–a meta-analysis approach with a mixed model. Ecol Model. 220(7):904–912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.