156
Views
3
CrossRef citations to date
0
Altmetric
Articles

Discrimination and prediction of the chemical composition and the phytotoxic activity of Wedelia trilobata essential oil (EO) using metabolomics and chemometrics

ORCID Icon, &
Pages 217-231 | Received 29 May 2020, Accepted 29 Oct 2020, Published online: 17 Nov 2020

References

  • Aboukhalid K, Al Faiz C, Douaik A, Bakha M, Kursa K, Agacka-Moldoch M, Machon N, Tomi F, Lamiri A. 2017. Influence of environmental factors on essential Oil variability in Origanum compactum Benth. growing wild in Morocco. Chem Biodivers. 14(9):1–17.
  • Aslani F, Juraimi AS, Ahmad-Hamdani MS, Alam MA, Hashemi FSG, Omar D, Hakim MA. 2015. Phytotoxic interference of volatile organic compounds and water extracts of Tinospora tuberculata Beumee on growth of weeds in rice fields. S Afr J Bot. 100:132–140.
  • Azizan KA, Abdul Ghani NH, Nawawi MF. 2015. GC-MS based metabolomics and multivariate statistical analysis of Wedelia trilobata extracts for the identification of potential phytochemical properties. Plant OMICS. 8(6):537–543.
  • Azizan KA, Ibrahim S, Abdul Ghani NH, Nawawi MF. 2016. LC-MS based metabolomics analysis to identify potential allelochemicals in Wedelia trilobata. Rec Nat Prod. 10(6):788–793.
  • Azizan KA, Ibrahim S, Abdul Ghani NH, Nawawi MF. 2019. Metabolomics approach to investigate phytotoxic effects of Wedelia trilobata leaves, litter and soil. Plant Biosyst. 153(5):691–699.
  • Baisaeng N, Kawaree R, Boonma A, Sadnen J, Khamkaew S, Klayraung S. 2017. Antibacterial activity of essential oil from Wedelia trilobata leaves against Propionibacterium granulosum. ScienceAsia. 43(5):275–280.
  • Balekar N, Nakpheng T, Srichana T. 2014. Wedelia trilobata L.: A phytochemical and pharmacological review. Chiang Mai J Sci. 41:590–605.
  • Barbosa LC, Filomeno CA, Teixeira RR. 2016. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules. 21(12):1671.
  • Benvenuti S, Cioni PL, Flamini G, Pardossi A. 2017. Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Res. 57(5):342–353.
  • Bouajaj S, Benyamna A, Bouamama H, Romane A, Falconieri D, Piras A, Marongiu B. 2013. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res. 27(18):1673–1676.
  • Bradow JM, Connick WJ. 1990. Volatile seed germination inhibitors from plant residues. J Chem Ecol. 16(3):645–666.
  • Broeckling CD, Reddy IR, Duran AL, Zhao X, Sumner LW. 2006. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem. 78(13):4334–4341.
  • Brunetti C, George RM, Tattini M, Field K, Davey MP. 2013. Metabolomics in plant environmental physiology. J Exp Bot. 64(13):4011–4020.
  • Carrubba A, Catalano C. 2009. Essential oil crops for sustainable agriculture – A review. In: Lichtfouse E, editor. Climate change, intercropping, pest control and beneficial microorganisms: climate change, intercropping, pest control and beneficial microorganisms. Dordrecht: Springer Netherlands; p. 137–187.
  • Dai J, Zhu L, Yang L, Qiu J. 2013. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. EXCLI J. 12:479–490.
  • De Martino L, Mancini E, de Almeida LFR, De Feo V. 2010. The antigerminative activity of twenty-seven monoterpenes. Molecules. 15(9):6630–6637.
  • Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W. 2016. Essential oils' chemical characterization and investigation of some biological activities: A critical review. Medicines. 3(4):25.
  • El Sawi SA, Ibrahim ME, El-Rokiek KG, El-Din SAS. 2019. Allelopathic potential of essential oils isolated from peels of three citrus species. Ann Agric. 64(1):89–94.
  • Farrés M, Platikanov S, Tsakovski S, Tauler R. 2015. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemometrics. 29(10):528–536.
  • García-Díaz M, Gil-Serna J, Patiño B, García-Cela E, Magan N, Medina Á. 2020. Assessment of the effect of Satureja montana and Origanum virens essential oils on Aspergillus flavus growth and Aflatoxin production at different water activities. Toxins. 12(3):142.
  • Govindappa M, Naga Sravya S, Poojashri MN, Sadananda TS, Chandrappa CP, Santoyo G, Sharanappa P, Anil Kumar NV. 2011. Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of water extract of Wedelia trilobata (L.) Hitchc. J Med Plant Res. 5(24):5718–5729.
  • Hassiotis CN, Ntana F, Lazari DM, Poulios S, Vlachonasios KE. 2014. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind Crops Prod. 62:359–366.
  • Hazrati H, Saharkhiz MJ, Moein M, Khoshghalb H. 2018. Phytotoxic effects of several essential oils on two weed species and Tomato. Biocatal. 13:204–212.
  • Heydari M, Zanfardino A, Taleei A, Shahnejat Bushehri AA, Hadian J, Maresca V, Sorbo S, Di Napoli M, Varcamonti M, Basile A, et al. 2018. Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha x piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules. 23(8):1903.
  • Ibáñez MD, Blázquez MA. 2018. Phytotoxicity of essential oils on selected weeds: Potential hazard on food crops. Plants. 7(4):79.
  • Ilkaee MN, Moradi R, Mansouri H, Ghorbani S, Paknajad F. 2017. Effect of abiotic environmental factors on growth and essential oil characteristics of Perovskia abrotanoides Karel. J Essent. 20(3):729–743.
  • Ismail A, Hamrouni L, Hanana M, Jamoussi B. 2013. Review on the phytotoxic effects of essential oils and their individual components: News approach for weed management. Int J Appl Biol Pharm. 4:96–114.
  • Kobaisy M, Tellez MR, Webber CL, Dayan FE, Schrader KK, Wedge DE. 2001. Phytotoxic and fungitoxic activities of the essential oil of Kenaf (Hibiscus cannabinus L.) leaves and its composition. J Agric Food Chem. 49(8):3768–3771.
  • Lee B-J, Zhou Y, Lee JS, Shin BK, Seo J-A, Lee D, Kim Y-S, Choi H-K. 2018. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis. PloS One. 13(4):e0196315. doi:1071/journal.pone.0196315.
  • Leite AGB, Farias ETN, Oliveira APd, Abreu REFd, Costa MMd, Almeida J, Estevão LRdM, Evêncio-Neto J. 2019. Phytochemical screening and antimicrobial activity testing of crude hydroalcoholic extract from leaves of Sphagneticola trilobata (Asteraceae). Ciênc. 49:e20180639.
  • Li D. 2012. Study on the chemical composition and extraction technology optimization of essential oil from Wedelia trilobata (L.) Hitchc. Afr J Biotechnol. 11(20):4513–4517.
  • Maes C, Bouquillon S, Fauconnier M-L. 2019. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 24(14):2539.
  • Mahajan G, Hickey L, Chauhan BS. 2020. Response of Barley genotypes to weed interference in Australia. Agronomy. 10(1):99.
  • Neik TX, Chai J-Y, Tan S-Y, Sudo MPS, Cui Y, Jayaraj J, Teo S-S, Olsen KM, Song B-K. 2019. When west meets East: The origins and spread of Weedy rice between continental and Island Southeast Asia. G3 (Bethesda). 9(9):2941–2950.
  • Pawlowski Â, Kaltchuk-Santos E, Brasil MC, Caramão EB, Zini CA, Soares GLG. 2013. Chemical composition of Schinus lentiscifolius March. essential oil and its phytotoxic and cytotoxic effects on lettuce and onion. S Afr J Bot. 88:198–203.
  • Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS. 2017. Weeds in a changing limate: Vulnerabilities, consequences, and implications for future weed management. Front Plant Sci. 8:95
  • Raut JS, Karuppayil SM. 2014. A status review on the medicinal properties of essential oils. Ind Crops Prod. 62:250–264.
  • Saad MMG, Gouda NAA, Abdelgaleil SAM. 2019. Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. J Environ Sci Heal B. 54(12):954–963.
  • Sampaio BL, Edrada-Ebel R, Da Costa FB. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep. 6(1):29265
  • Seigler DS. 1999. Sesquiterpenes. In: Plant Secondary Metabolism. Boston, MA: Springer US; p. 367–397.
  • Sharma A, Singh HP, Batish DR, Kohli RK. 2019. Chemical profiling, cytotoxicity and phytotoxicity of foliar volatiles of Hyptis suaveolens. Ecotoxicol Environ Saf. 171:863–870.
  • Si C-C, Dai Z-C, Lin Y, Qi S-S, Huang P, Miao S-L, Du D-L. 2014. Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island. Biol Invasions. 16(11):2323–2337.
  • Silva CJd, Barbosa LCA, Demuner AJ, Montanari RM, Francino D, Meira RMSA, Souza AOd. 2012. Chemical composition and histochemistry of Sphagneticola trilobata essential oil. Rev bras farmacogn. 22(3):482–489.
  • Smeriglio A, Trombetta D, Cornara L, Valussi M, De Feo V, Caputo L. 2019. Characterization and phytotoxicity assessment of essential oils from plant byproducts. Molecules. 24(16):2941.
  • Song L, Chow WS, Sun L, Li C, Peng C. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. J Exp Bot. 61(14):4087–4096.
  • Tommasi L, Negro C, Cerfeda A, Nutricati E, Zuccarello V, De Bellis L, Miceli A. 2007. Influence of environmental factors on essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Puglia (Italy). J Essent Oil Res. 19(6):572–580.
  • Verma RS, Padalia RC, Chauhan A, Sundaresan V. 2014. Essential oil composition of Sphagneticola trilobata (L.) Pruski from India. J Essent Oil Res. 26(1):29–33.
  • Wheelock AM, Wheelock CE. 2013. Trials and tribulations of 'omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol Biosyst. 9(11):2589–2596.
  • Young T, Alfaro AC, Villas-Bôas S. 2015. Identification of candidate biomarkers for quality assessment of hatchery-reared mussel larvae via GC/MS-based metabolomics. New Zeal J Mar Fresh. 49(1):87–95.
  • Zaka SM, Iqbal N, Saeed Q, Akrem A, Batool M, Khan AA, Anwar A, Bibi M, Azeem S, Rizvi D-e-N, et al. 2019. Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi J Biol Sci. 26(7):1767–1771.
  • Zhang JH, Sun HL, Chen SY, Zeng L, Wang TT. 2017. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium . Bot Stud. 58(1):13
  • Zhao L, Hu Z, Li S, Zhou X, Li J, Su X, Zhang L, Zhang Z, Dong J. 2019. Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Sci Rep. 9(1):2763

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.