100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of culturable truffle-inhabiting fungi isolated from Tuber melanosporum, T. aestivum and T. borchii ascomata

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 978-983 | Received 01 Feb 2023, Accepted 04 Jul 2023, Published online: 03 Aug 2023

References

  • Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, Frey-Klett P, Uroz S. 2014. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol. 16(9):2831–2847. doi: 10.1111/1462-2920.12294.
  • Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C, Zambonelli A, Stocchi V. 2005. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett. 247(1):23–35. doi: 10.1016/j.femsle.2005.04.027.
  • Barbieri E, Ceccaroli P, Agostini D, Zeppa SD, Gioacchini AM, Stocchi V. 2016. Truffle-associated bacteria: extrapolation from diversity to function. In: Zambonelli A, Iotti M, Murat C, editors. True Truffle (Tuber spp.) in the World. Soil Biology. Vol. 47. Cham, Switzerland: Springer International Publishing; p. 301–317. doi: 10.1007/978-3-319-31436-5_18.
  • Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P, Saltarelli R, Zambonelli A, Stocchi V. 2007. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol. 9(9):2234–2246. doi: 10.1111/j.1462-2920.2007.01338.x.
  • Barbieri E, Potenza L, Rossi I, Sisti D, Giomaro G, Rossetti S, Beimfohr C, Stocchi V. 2000. Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup Bacterium in Tuber borchii Vittad. ectomycorrhizal mycelium. Appl Environ Microbiol. 66(11):5035–5042. doi: 10.1128/AEM.66.11.5035-5042.2000.
  • Bedini S, Bagnoli G, Sbrana C, Leporini C, Tola E, Dunne C, Filippi C, D’Andrea F, O’Gara F, Nuti MP. 1999. Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis. 26:223–236.
  • Benucci GMN, Bonito G, Falini LB, Bencivenga M, Donnini D. 2012. Truffles, timber, food, and fuel: sustainable approaches for multi-cropping truffles and economically important plants. In: Zambonelli A, Bonito GM, editors. Edible ectomycorrhizal mushrooms. Soil Biology. Vol. 34. Berlin, Heidelberg: Springer; p. 265–280. doi: 10.1007/978-3-642-33823-6_15.
  • Benucci GMN, Bonito GM. 2016. The truffle microbiome: species and geography effects on bacteria associated with fruiting bodies of hypogeous Pezizales. Microb Ecol. 72(1):4–8. doi: 10.1007/s00248-016-0755-3.
  • Bryden WL. 2007. Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr. 16:95–101.
  • Buzzini P, Gasparetti C, Turchetti B, Cramarossa MR, Vaughan-Martini A, Martini A, Pagnoni UM, Forti L. 2005. Production of volatile organic compounds (VOCs) by yeasts isolated from the ascocarps of black (Tuber melanosporum Vitt.) and white (Tuber magnatum Pico) truffles. Arch Microbiol. 184(3):187–193. doi: 10.1007/s00203-005-0043-y.
  • Chuang S-C, Vecchia CL, Boffetta P. 2009. Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett. 286(1):9–14. doi: 10.1016/j.canlet.2008.10.040.
  • Elliott TF, Bower DS, Vernes K. 2019. Reptilian mycophagy: a global review of mutually beneficial associations between reptiles and macrofungi. Mycosphere. 10(1):776–797. doi: 10.5943/mycosphere/10/1/18.
  • Eslick H. 2013. Identification and management of the agent causing rot in black truffles Part 2. Industry Report. Australian Government: rural Industries Research and Development Corporation. RIRDC Publication No. 13/111.
  • Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 2(2):113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x.
  • Gazzanelli G, Malatesta M, Pianetti A, Baffone W, Stocchi V, Citterio B. 1999. Bacteria associated to fruit bodies of the ecto-mycorrhizal fungus Tuber borchii Vittad. Symbiosis. 26:211–222.
  • Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. 2008. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 14(27):4300–4308. doi: 10.3748/wjg.14.4300.
  • Gong M, Zhong C, Chen Y, Wang F. 2001. An investigation of diseases on the three species national truffles. Edible Fungi China. 20:18–19.
  • Gryndler M. 2016. True truffle host diversity. In: Zambonelli A, Iotti M, Murat C., editors. True Truffle (Tuber spp.) in the World. Soil Biology. Vol. 47. Cham, Switzerland: Springer International Publishing; p. 267–281. doi: 10.1007/978-3-319-31436-5_16.
  • Gryndler M, Soukupová L, Hršelová H, Gryndlerová H, Borovička J, Streiblová E, Jansa J. 2013. A quest for indigenous truffle helper prokaryotes. Environ Microbiol Rep. 5(3):346–352. doi: 10.1111/1758-2229.12014.
  • Hall AT. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98.
  • Iotti M, Zambonelli A. 2006. A quick and precise technique for identifying ectomycorrhizas by PCR. Mycol Res. 110(Pt 1):60–65. doi: 10.1016/j.mycres.2005.09.010.
  • Leonardi M, Ascione S, Pacioni G, Cesare P, Pacioni ML, Miranda M, Zarivi O. 2018. The challenge for identifying the fungi living inside mushrooms: the case of truffle inhabiting mycelia. Plant Biosyst. 152(5):1002–1010. doi: 10.1080/11263504.2017.1407373.
  • Liu D, Chater CCC, Yu F, Perez-Moreno J. 2021. Tuber pseudohimalayense ascomata-compartments strongly select their associated bacterial microbiome from nearby pine forest soils independently of their maturation stage. Pedobiologia. 87–88:150743. doi: 10.1016/j.pedobi.2021.150743.
  • Ma YJ, Zheng LP, Wang JW. 2019. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1. Microb Cell Fact. 18(1):121. doi: 10.1186/s12934-019-1170-5.
  • Marletto F. 1969. La microflora della rizosfera delle tartufaie, I. I blastomiceti dei tartufi e della rizosfera delle tartufaie. Allionia. 15:155–171.
  • Monaco P, Bucci A, Naclerio G, Mello A. 2021. Heterogeneity of the white truffle Tuber magnatum in a limited geographic area of Central-Southern Italy. Environ Microbiol Rep. 13(5):591–599. doi: 10.1111/1758-2229.12956.
  • Niimi J, Deveau A, Splivallo R. 2021. Geographical-based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. New Phytol. 230(4):1623–1638. doi: 10.1111/nph.17259.
  • Nuske SJ, Vernes K, May TW, Claridge AW, Congdon BC, Krockenberger A, Abell SE. 2017. Redundancy among mammalian fungal dispersers and the importance of declining specialists. Fungal Ecol. 27:1–13. doi: 10.1016/j.funeco.2017.02.005.
  • Ori F, Menotta M, Leonardi M, Amicucci A, Zambonelli A, Covès H, Selosse M-A, Schneider-Maunoury L, Pacioni G, Iotti M. 2021. Effect of slug mycophagy on Tuber aestivum spores. Fungal Biol. 125(10):796–805. doi: 10.1016/j.funbio.2021.05.002.
  • Pacioni G, Leonardi M. 2016. Truffle-Inhabiting Fungi. In: Zambonelli A, Iotti M, Murat C, editors. True Truffle (Tuber spp.) in the World. Soil Biology. Vol. 47. Cham, Switzerland: Springer International Publishing; p. 283–299. doi: 10.1007/978-3-319-31436-5_17.
  • Pacioni G, Leonardi M, Aimola P, Ragnelli AM, Rubini A, Paolocci F. 2007. Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol Res. 111(Pt 12):1450–1460. doi: 10.1016/j.mycres.2007.08.016.
  • Pacioni G, Leonardi M, Taglienti A, Cozzolino S, Ritota M, Sequi P, Valentini M. 2010. Internal structure and quality assessment of fresh truffle Tuber melanosporum by means of magnetic resonance imaging spectroscopy. Plant Biosyst. 144(4):826–832. doi: 10.1080/11263504.2010.522774.
  • Pacioni G, Ragnelli AM, Miranda M. 1995. Truffle development and interactions with the biotic environment. In: Stocchi V, Bonfante P, Nuti M, editors. Biotechnology of Ectomycorrhizae. Boston (MA): Springer; p. 213–227. doi: 10.1007/978-1-4615-1889-1_19.
  • Pavić A, Stanković S, Saljnikov E, Krüger D, Buscot F, Tarkka M, Marjanović Ž. 2013. Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecol. 6(6):527–538. doi: 10.1016/j.funeco.2013.05.006.
  • Perlińska-Lenart U, Piłsyk S, Gryz E, Turło J, Hilszczańska D, Kruszewska JS. 2020. Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.). Arch Microbiol. 202(10):2727–2738. doi: 10.1007/s00203-020-02002-x.
  • Ratti C, Iotti M, Zambonelli A, Terlizzi F. 2016. Mycoviruses infecting true Truffles. In: Zambonelli A, Iotti M, Murat C, editors. True Truffle (Tuber spp.) in the World. Soil Biology. Vol. 47. Cham, Switzerland: Springer International Publishing; p. 333–349. doi: 10.1007/978-3-319-31436-5_20.
  • Rivera CS, Blanco D, Oria R, Venturini ME. 2010. Diversity of culturable microorganisms and occurrence of Listeria monocytogenes and Salmonella spp. in Tuber aestivum and Tuber melanosporum ascocarps. Food Microbiol. 27(2):286–293. doi: 10.1016/j.fm.2009.11.001.
  • Sabella E, Nutricati E, Aprile A, Miceli A, Sorce C, Lorenzi R, De Bellis L. 2015. Arthrinium phaeospermum isolated from Tuber borchii ascomata: the first evidence for a “Mycorrhization Helper Fungus”? Mycol Progress. 14(8):59. doi: 10.1007/s11557-015-1083-6.
  • Samuels R, Paula A, Teixeira Carolino A, Gomes S, Morais C, Cypriano M, Silva L, Ribeiro A, Santos J, Silva C, et al. 2016. Entomopathogenic organisms: conceptual advances and real-world applications for mosquito biological control. OAIP. 25. doi: 10.2147/OAIP.S68850.
  • Sbrana C, Bagnoli G, Bedini S, Filippi C, Giovannetti M, Nuti MP. 2000. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps. Can J Microbiol. 46(3):259–268. doi: 10.1139/w99-135.
  • Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. 2015. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. 17(8):2647–2660. doi: 10.1111/1462-2920.12521.
  • Stielow B, Menzel W. 2010. Complete nucleotide sequence of TaV1, a novel totivirus isolated from a black truffle ascocarp (Tuber aestivum Vittad.). Arch Virol. 155(12):2075–2078. doi: 10.1007/s00705-010-0824-8.
  • Sujeevan R, Hebert PA. 2007. BOLD: the barcode of life data system. Mol Ecol Notes. 7(3):355–364. doi: 10.1111/j.1471-8286.2006.01678.x.
  • Sun J-Z, Liu X-Z, McKenzie EHC, Jeewon R, Liu J-K(, Zhang X-L, Zhao Q, Hyde KD. 2019. Correction to: fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Divers. 95(1):431–432. doi: 10.1007/s13225-019-00424-7.
  • White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to the methods and applications. New York (NY): Academic Press; p. 315–322.
  • Xiao G, Ying S-H, Zheng P, Wang Z-L, Zhang S, Xie X-Q, Shang Y, St. Leger RJ, Zhao G-P, Wang C, et al. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep. 2(1):483. doi: 10.1038/srep00483.
  • Yang H-X, Wu X, Chi M-J, Li Z-H, Feng T, Ai H-L, Liu J-K. 2021. Structure and cytotoxicity of trichothecenes produced by the potato-associated fungus Trichothecium crotocinigenum. Bioorg Chem. 111:104874. doi: 10.1016/j.bioorg.2021.104874.
  • Zacchi L, Vaughan-Martini A, Angelini P. 2003. Yeast distribution in a truffle–field ecosystem. Ann Microbiol. 53:275–282.
  • Zambonelli A, Iotti M, Murat C. 2016. True Truffle (Tuber spp.) in the World. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-319-31436-5.
  • Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V. 2004. Determination of specific volatile organic compounds synthesized during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 18(2):199–205. doi: 10.1002/rcm.1313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.