153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing biological activities and phenolic content of wild grapevine roots by severe drought stress

ORCID Icon, , , , , , & show all
Pages 344-353 | Received 27 Jul 2023, Accepted 22 Dec 2023, Published online: 10 Jan 2024

References

  • Ahmed MO, Baptiste KE. 2018. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 24(5):590–606. doi: 10.1089/mdr.2017.0147.
  • Ahn SY, Kim SA, Choi S-J, Yun HK. 2015. Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Hortic Environ Biotechnol. 56(1):36–43. doi: 10.1007/s13580-015-0045-x.
  • Alviano D, Alviano C. 2009. Plant extracts: search for new alternatives to treat microbial diseases. Curr Pharm Biotechnol. 10(1):106–121. doi: 10.2174/138920109787048607.
  • Amara N, Melouk FZ. 2016. Activité antimicrobienne des extraits des feuilles de la Vigne Sauvage (Vitis vinifera sylvestris). Alger J Nat Prod. 4(3):358–366.
  • Archana H, Bose VG. 2022. Evaluation of phytoconstituents from selected medicinal plants and its synergistic antimicrobial activity. Chemosphere. 287:132276.
  • Arnold C, Schnitzler A, Parisot C, Maurin A. 2010. Historical reconstruction of a relictual population of wild grapevines (Vitis vinifera ssp sylvestris, Gmelin, Hegi) in a floodplain forest of the upper Seine valley. River Res Appl. 26(7):904–914. doi: 10.1002/rra.1312.
  • Askri H, Gharbi F, Rejeb S, Mliki A, Ghorbel A. 2018. Differential physiological responses of Tunisian wild grapevines (Vitis vinifera L. subsp. sylvestris) to NaCl salt stress. Braz J Bot. 41(4):795–804. doi: 10.1007/s40415-018-0500-x.
  • Azri W, Cosette P, Guillou C, Rabhi M, Nasr Z, Mliki A. 2020. Physiological and proteomic responses to drought stress in leaves of two wild grapevines (Vitis sylvestris): a comparative study. Plant Growth Regul. 91(1):37–52. doi: 10.1007/s10725-020-00586-4.
  • Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Mérillon J-M, Richard T. 2017. Antioxidant and cytoprotective activities of grapevine stilbenes. J Agric Food Chem. 65(24):4952–4960. doi: 10.1021/acs.jafc.7b01254.
  • Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. 2019. Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric. 99(4):1457–1474. doi: 10.1002/jsfa.9357.
  • Boucher HW, Corey GR. 2008. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 46 Suppl 5(S5):S344–S349. doi: 10.1086/533590.
  • Burin VM, Ferreira-Lima NE, Panceri CP, Bordignon-Luiz MT. 2014. Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: evaluation of different extraction methods. Microchem J. 114:155–163. doi: 10.1016/j.microc.2013.12.014.
  • Cantos E, Espín JC, Fernández MJ, Oliva J, Tomás-Barberán FA. 2003. Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J Agric Food Chem. 51(5):1208–1214. doi: 10.1021/jf020939z.
  • Chen Q, Diao L, Song H, Zhu X. 2018. Vitis amurensis Rupr: a review of chemistry and pharmacology. Phytomedicine. 49:111–122. doi: 10.1016/j.phymed.2017.08.013.
  • Chiu N, Chang K. 1986. The illustrated medicinal plants of Taiwan. Taipei: Southern Materials Center. Inc., p. 99.
  • Chiu N-Y, Chang K-h 1992. The illustrated medicinal plants of Taiwan. Taipei: Southern Materials Center; p. 84.
  • Christopher A, Sarkar D, Shetty K. 2021. Elicitation of stress-induced phenolic metabolites for antimicrobial applications against foodborne human bacterial pathogens. Antibiotics. 10(2):109. doi: 10.3390/antibiotics10020109.
  • Cueva C, Moreno-Arribas MV, Martín-Alvarez PJ, Bills G, Vicente MF, Basilio A, Rivas CL, Requena T, Rodríguez JM, Bartolomé B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol. 161(5):372–382. doi: 10.1016/j.resmic.2010.04.006.
  • Daglia M. 2012. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 23(2):174–181. doi: 10.1016/j.copbio.2011.08.007.
  • Daldoul S, Gargouri M, Weinert C, Jarrar A, Egert B, Mliki A, Nick P. 2023. A Tunisian wild grape leads to metabolic fingerprints of salt tolerance. Plant Physiol. 193(1):371–388. doi: 10.1093/plphys/kiad304.
  • Daldoul S, Hanzouli F, Hamdi Z, Chenenaoui S, Wetzel T, Nick P, Mliki A, Gargouri M. 2022. The root transcriptome dynamics reveals new valuable insights in the salt-resilience mechanism of wild grapevine (Vitis vinifera subsp. sylvestris). Front Plant Sci. 13:1077710. doi: 10.3389/fpls.2022.1077710.
  • De Bona GS, Bertazzon N, Angelini E, Vincenzi S. 2020. Influence of pruning time and viral infection on stilbenoid levels in Pinot noir grape canes. J Sci Food Agric. 100(4):1741–1747. doi: 10.1002/jsfa.10195.
  • Deluc LG, Decendit A, Papastamoulis Y, Mérillon J-M, Cushman JC, Cramer GR. 2011. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. J Agric Food Chem. 59(1):289–297. doi: 10.1021/jf1024888.
  • Deluc LG, Quilici DR, Decendit A, Grimplet J, Wheatley MD, Schlauch KA, Mérillon J-M, Cushman JC, Cramer GR. 2009. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics. 10(1):212. doi: 10.1186/1471-2164-10-212.
  • Di Vecchi-Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S, Bourse T, Boselli M, This P. 2009. Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris. J Hered. 100(1):66–75. doi: 10.1093/jhered/esn084.
  • Eggleston K, Zhang R, Zeckhauser RJ. 2010. The global challenge of antimicrobial resistance: insights from economic analysis. Int J Environ Res Public Health. 7(8):3141–3149. doi: 10.3390/ijerph7083141.
  • Gabaston J, El Khawand T, Waffo-Teguo P, Decendit A, Richard T, Mérillon J-M, Pavela R. 2018. Stilbenes from grapevine root: a promising natural insecticide against Leptinotarsa decemlineata. J Pest Sci. 91(2):897–906. doi: 10.1007/s10340-018-0956-2.
  • Gajdács M. 2019. The concept of an ideal antibiotic: implications for drug design. Molecules. 24(5):892. doi: 10.3390/molecules24050892.
  • Górniak I, Bartoszewski R, Króliczewski J. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 18(1):241–272. doi: 10.1007/s11101-018-9591-z.
  • Gouvinhas I, Santos RA, Queiroz M, Leal C, Saavedra MJ, Domínguez-Perles R, Rodrigues M, Barros AI. 2018. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind Crops Prod. 126:83–91. doi: 10.1016/j.indcrop.2018.10.006.
  • Grieco P, Carotenuto A, Auriemma L, Limatola A, Di Maro S, Merlino F, Mangoni ML, Luca V, Di Grazia A, Gatti S, et al. 2013. Novel α-MSH peptide analogues with broad spectrum antimicrobial activity. PLoS One. 8(4):e61614. doi: 10.1371/journal.pone.0061614.
  • Gris EF, Mattivi F, Ferreira EA, Vrhovsek U, Filho DW, Pedrosa RC, Bordignon-Luiz MT. 2011. Stilbenes and tyrosol as target compounds in the assessment of antioxidant and hypolipidemic activity of Vitis vinifera red wines from Southern Brazil. J Agric Food Chem. 59(14):7954–7961. doi: 10.1021/jf2008056.
  • Guadie A, Dakone D, Unbushe D, Wang A, Xia S. 2020. Antibacterial activity of selected medicinal plants used by traditional healers in Genta Meyche (Southern Ethiopia) for the treatment of gastrointestinal disorders. J Herb Med. 22:100338.
  • Gyawali R, Ibrahim SA. 2014. Natural products as antimicrobial agents. Food Control. 46:412–429. doi: 10.1016/j.foodcont.2014.05.047.
  • Herrera JC, Hochberg U, Degu A, Sabbatini P, Lazarovitch N, Castellarin SD, Fait A, Alberti G, Peterlunger E. 2017. Grape metabolic response to postveraison water deficit is affected by interseason weather variability. J Agric Food Chem. 65(29):5868–5878. doi: 10.1021/acs.jafc.7b01466.
  • Huang K-S, Lin M. 1999. Oligostilbenes from the roots of Vitis amurensis. J Asian Nat Prod Res. 2(1):21–28. doi: 10.1080/10286029908039886.
  • Huang K-S, Lin M, Cheng G-F. 2001. Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes. Phytochemistry. 58(2):357–362. doi: 10.1016/s0031-9422(01)00224-2.
  • Huang K-S, Lin M, Yu L-N, Kong M. 2000. Four novel oligostilbenes from the roots of Vitis amurensis. Tetrahedron. 56(10):1321–1329. doi: 10.1016/S0040-4020(99)01034-0.
  • Huang Y-L, Tsai W-J, Shen C-C, Chen C-C. 2005. Resveratrol derivatives from the roots of Vitis t hunbergii. J Nat Prod. 68(2):217–220. doi: 10.1021/np049686p.
  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 10:800. doi: 10.3389/fpls.2019.00800.
  • Jabbari Shiadeh SM, Pormohammad A, Hashemi A, Lak P. 2019. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infect Drug Resist. 12:2713–2725. doi: 10.2147/IDR.S206084.
  • Jang MH, Piao XL, Kim HY, Cho EJ, Baek SH, Kwon SW, Park JH. 2007. Resveratrol oligomers from Vitis amurensis attenuate β-amyloid-induced oxidative stress in PC12 cells. Biol Pharm Bull. 30(6):1130–1134. doi: 10.1248/bpb.30.1130.
  • Jin K-S, Oh YN, Hyun SK, Kwon HJ, Kim BW. 2014a. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem Toxicol. 68:38–43. doi: 10.1016/j.fct.2014.03.001.
  • Jin K-S, Oh YN, Hyun SK, Kwon HJ, Kim BW. 2014b. Vitis amurensis Ruprecht root inhibited α-melanocyte stimulating hormone-induced melanogenesis in B16F10 cells. Nutr Res Pract. 8(5):509–515. doi: 10.4162/nrp.2014.8.5.509.
  • Jung I-G, Jeong J-Y, Yum S-H, Hwang Y-J. 2022. Inhibitory effects of selected medicinal plants on bacterial growth of Methicillin-Resistant Staphylococcus aureus. Molecules. 27(22):7780. doi: 10.3390/molecules27227780.
  • Krasteva D, Ivanov Y, Chengolova Z, Godjevargova T. 2023. Antimicrobial potential, antioxidant activity, and phenolic content of grape seed extracts from four grape varieties. Microorganisms. 11(2):395. doi: 10.3390/microorganisms11020395.
  • Lee E-O, Lee H-J, Hwang H-S, Ahn K-S, Chae C, Kang K-S, Lu J, Kim S-H. 2006. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis. 27(10):2059–2069. doi: 10.1093/carcin/bgl055.
  • Machado NF, Domínguez-Perles R. 2017. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules. 22(2):286. doi: 10.3390/molecules22020286.
  • Matthews MA, Anderson MM. 1988. Fruit ripening in Vitis vinifera L.: responses to seasonal water deficits. AJEV. 39(4):313–320.
  • Mattio LM, Catinella G, Dallavalle S, Pinto A. 2020. Stilbenoids: a natural arsenal against bacterial pathogens. Antibiotics. 9(6):336. doi: 10.3390/antibiotics9060336.
  • Mogana R, Adhikari A, Tzar M, Ramliza R, Wiart C. 2020. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement Med Ther. 20(1):55. doi: 10.1186/s12906-020-2837-5.
  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, et al. 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 77(3):367–379. doi: 10.1111/tpj.12388.
  • Nascimento N, Fett-Neto AG. 2010. Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Appl. 643:1–13.
  • Netshiluvhi T, Eloff J. 2016. Influence of annual rainfall on antibacterial activity of acetone leaf extracts of selected medicinal trees. S Afr J Bot. 102:197–201. doi: 10.1016/j.sajb.2015.04.008.
  • Nick P. 2012. Von der Ex-situ-Erhaltung bis zur Nutzung in der nachhaltigen Landwirtschaft: das Beispiel der Europäischen Wildrebe. Berichte Ges Pflanzenbauwiss. vol. 6, pp. 36–38.
  • Nivelle L, Aires V, Rioult D, Martiny L, Tarpin M, Delmas D. 2018. Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. Food Chem Toxicol. 116(Pt B):323–334. doi: 10.1016/j.fct.2018.04.043.
  • Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: classification, structures, sources, and action mechanisms. Compr Rev Food Sci Food Saf. 16(6):1243–1268. doi: 10.1111/1541-4337.12298.
  • Peng SC, Cheng CY, Sheu F, Su CH. 2008. The antimicrobial activity of heyneanol A extracted from the root of Taiwanese wild grape. J Appl Microbiol. 105(2):485–491. doi: 10.1111/j.1365-2672.2008.03766.x.
  • Pérez-Álvarez EP, Intrigliolo DS, Almajano MP, Rubio-Bretón P, Garde-Cerdán T. 2021. Effects of water deficit irrigation on phenolic composition and antioxidant activity of monastrell grapes under semiarid conditions. Antioxidants. 10(8):1301. doi: 10.3390/antiox10081301.
  • Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros J-P, Ageorges A, Sommerer N, Boulet J-C, et al. 2017. Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci. 8:1826. doi: 10.3389/fpls.2017.01826.
  • Piotrowska H, Kucinska M, Murias M. 2012. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res - Rev. Mutat Res. 750(1):60–82.
  • Privat C, Telo JP, Bernardes-Genisson V, Vieira A, Souchard J-P, Nepveu F. 2002. Antioxidant properties of trans-ε-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media. J Agric Food Chem. 50(5):1213–1217. doi: 10.1021/jf010676t.
  • Qaderi MM, Martel AB, Strugnell CA. 2023. Environmental Factors Regulate Plant Secondary Metabolites. Plants. 12(3):447. doi: 10.3390/plants12030447.
  • Radulovic N, Blagojevic P, Stojanovic-Radic Z, Stojanovic N. 2013. Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem. 20(7):932–952.
  • Rayne S, Karacabey E, Mazza G. 2008. Grape cane waste as a source of trans-resveratrol and trans-viniferin: high-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind Crops Prod. 27(3):335–340. doi: 10.1016/j.indcrop.2007.11.009.
  • Rivas-Cáceres RR, Stephano-Hornedo JL, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, Mora-Herrera ME, Díaz LMC, Cipriano-Salazar M, Alaba PA. 2018. Bactericidal effect of silver nanoparticles against propagation of Clavibacter michiganensis infection in Lycopersicon esculentum Mill. Microb Pathog. 115:358–362. doi: 10.1016/j.micpath.2017.12.075.
  • Salehi B, Vlaisavljevic S, Adetunji CO, Adetunji JB, Kregiel D, Antolak H, Pawlikowska E, Uprety Y, Mileski KS, Devkota HP. 2019. Plants of the genus Vitis: phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci Technol. 91:362–379.
  • Savoi S, Wong DC, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. 2016. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 16(1):67. doi: 10.1186/s12870-016-0760-1.
  • Schnee S, Viret O, Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol. 72(4–6):128–133. doi: 10.1016/j.pmpp.2008.07.002.
  • Scholander PF, Hammel H, Hemmingsen E, Bradstreet E. 1964. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci U S A. 52(1):119–125. doi: 10.1073/pnas.52.1.119.
  • Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J, Wang D, Wang Y. 2014. The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes (Vitis quinquangularis and Vitis vinifera). Plant Physiol Biochem. 74:24–32. doi: 10.1016/j.plaphy.2013.10.021.
  • Smirnova GV, Vysochina GI, Muzyka NG, Samoylova ZY, Kukushkina TA, Oktyabrsky ON. 2010. Evaluation of antioxidant properties of medical plants using microbial test systems. World J Microbiol Biotechnol. 26(12):2269–2276. doi: 10.1007/s11274-010-0417-4.
  • Su N, Lu Y, Wu Q, Liu Y, Xia Y, Xia K, Cui J. 2016. UV-B-induced anthocyanin accumulation in hypocotyls of radish sprouts continues in the dark after irradiation. J Sci Food Agric. 96(3):886–892. doi: 10.1002/jsfa.7161.
  • Tabbene O, Karkouch I, Elkahoui S, Cosette P, Mangoni M-L, Jouenne T, Limam F. 2010. A new antibacterial and antioxidant S07-2 compound produced by Bacillus subtilis B38. FEMS Microbiol Lett. 303(2):176–182. doi: 10.1111/j.1574-6968.2009.01875.x.
  • Tacconelli E. 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development.
  • Tang SS, Apisarnthanarak A, Hsu LY. 2014. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community-and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev. 78:3–13. doi: 10.1016/j.addr.2014.08.003.
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28(3):603–661. doi: 10.1128/CMR.00134-14.
  • Valletta A, Iozia LM, Leonelli F. 2021. Impact of environmental factors on stilbene biosynthesis. Plants. 10(1):90. doi: 10.3390/plants10010090.
  • Villangó S, Szekeres A, Bencsik O, Láposi R, Pálfi Z, Zsófi Z. 2016. The effect of postveraison water deficit on the phenolic composition and concentration of the Kékfrankos (Vitis vinifera L.) berry. Sci Hortic. 209:113–116. doi: 10.1016/j.scienta.2016.06.010.
  • Vincenzi S, Tomasi D, Gaiotti F, Lovat L, Giacosa S, Torchio F, Segade SR, Rolle L. 2013. Comparative study of the resveratrol content of twenty-one Italian red grape varieties. SAJEV. 34(1):30–35.
  • Viret O, Spring J-L, Gindro K. 2018. Stilbenes: biomarkers of grapevine resistance to fungal diseases. OENO One. 52(3):235–241. doi: 10.20870/oeno-one.2018.52.3.2033.
  • Vu J, Carvalho J. 2011. Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology. Front Biol. 6(5):357–366. doi: 10.1007/s11515-011-1167-x.
  • Waffo Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon JM. 1998. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J Nat Prod. 61(5):655–657. doi: 10.1021/np9704819.
  • Weidner S, Karolak M, Karamac M, Kosinska A, Amarowicz R. 2009. Phenolic compounds and properties of antioxidants in grapevine roots [Vitis vinifera L.] under drought stress followed by recovery. ASBP. 78(2):97–103.
  • Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL. 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 5(12):751–762. doi: 10.1016/S1473-3099(05)70295-4.
  • Yadav B, Jogawat A, Rahman MS, Narayan OP. 2021. Secondary metabolites in the drought stress tolerance of crop plants: a review. Gene Reports. 23:101040. doi: 10.1016/j.genrep.2021.101040.
  • Yen G, Chen H. 1995. Antioxidant activity of different tea extracts in connection with their antimutagenicity. J Agric Food Chem. 43(1):27–32. doi: 10.1021/jf00049a007.
  • Yu B, Jiang Y, Zhang B, Yang H, Ma T. 2018. Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel. Pharmacol Res. 129:453–461. doi: 10.1016/j.phrs.2017.11.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.