44
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Ecophysiological traits of seedlings from different accessions of Stipa tenacissima along a climatic gradient

ORCID Icon, , & ORCID Icon
Pages 419-431 | Received 23 Jul 2023, Accepted 29 Jan 2024, Published online: 08 Mar 2024

References

  • Aidar ST, Meirelles ST, Oliveira RF, Chaves ARM, Fernandes-Júnior PI. 2014. Photosynthetic response of poikilochlorophyllous desiccation-tolerant Pleurostima purpurea (Velloziaceae) to dehydration and rehydration. Photosynt. 52(1):124–133. doi: 10.1007/s11099-014-0014-0.
  • Ariz I, Cruz C, Neves T, Irigoyen JJ, Garcia-Olaverri C, Nogués S, Aparicio-Tejo PM, Aranjuelo I. 2015. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability. Front Plant Sci. 6:574. doi: 10.3389/FPLS.2015.00574/BIBTEX.
  • Balaguer L, Pugnaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E. 2002. Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil. 240(2):343–352. doi: 10.1023/A:1015745118689.
  • Bambach N, Kyaw TPU, Gilbert ME. 2020. A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress. Agric for Meteorol. 285-286:107911. doi: 10.1016/j.agrformet.2020.107911.
  • Banks JM. 2018. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ Exp Bot. 155:118–127. doi: 10.1016/j.envexpbot.2018.06.022.
  • Ben Mariem H, Chaieb M. 2017. Climate change impacts on the distribution of Stipa tenacissima L. Ecosystems in north african arid zone – A case study in tunisia. Appl Ecol Env Res. 15(3):67–82. doi: 10.15666/aeer/1503_067082.
  • Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A. 2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ. 36(9):1641–1657. doi: 10.1111/PCE.12118.
  • Björkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170(4):489–504. doi: 10.1007/bf00402983.
  • Boussaid M, Benito C, Harche MK, Naranjo T, Zedek M. 2010. Genetic variation in natural populations of Stipa tenacissima from Algeria. Biochem Genet. 48(9–10):857–872. doi: 10.1007/s10528-010-9367-7.
  • Brüggemann N, Brüggemann B, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, et al. 2011. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences [Internet]. 8(11):3457–3489. doi: 10.5194/bg-8-3457-2011.
  • Chaieb M, Floret C, Floc’h EL, Pontanier R. 1992. Life history strategies and water ressource allocation in five pasture species of Tunisian arid zone. Arid Soil Res Rehabil. 6(1):1–10. doi: 10.1080/15324989209381291.
  • Chaieb M, Henchi B, Boukhris M. 1996. Impact of clipping on root systems of 3 grasses species in Tunisia. J Range Manag [Internet]. 49(4):336–339. doi: 10.2307/4002593.
  • Chandregowda MH, Tjoelker MG, Power SA, Pendall E. 2022. Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Plant Cell Environ. 45(8):2271–2291. doi: 10.1111/PCE.14334.
  • Chen S, Bai Y, Zhang L, Han X. 2005. Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot [Internet]. 53(1):65–75. doi: 10.1016/j.envexpbot.2004.03.002.
  • Colom MR, Pini Prato E, Giannini R. 2003. Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. Trees - Struct Funct. 17(3):207–210. doi: 10.1007/s00468-002-0222-2.
  • Cortina J, Maestre FT, Ramírez D. 2009. Innovations in semiarid restoration. The case of Stipa tenacissima L. steppes. In: Bautista S, Aronson J, Vallejo R, editors. Land restoration to combat desertification. innovative approaches, quality control and project evaluation. Spain: fundación CEAM.
  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP. 2002. Stable isotopes in plant ecology. Annu Rev Ecol Syst. 33(1):507–559. doi: 10.1146/annurev.ecolsys.33.020602.095451.
  • De Martonne E. 1926. Une Nouvelle fonction climatologique. L’Indice d’aridité. Météorolgoie [Internet]. 68:449–458. http://www.worldcat.org/title/nouvelle-fonction-climatologique-lindice-daridite/oclc/492678282.
  • Eglin T, Fresneau C, Lelarge-Trouverie C, Francois C, Damesin C. 2009. Leaf and twig δ13C during growth in relation to biochemical composition and respired CO2. Tree Physiol. 29(6):777–788. doi: 10.1093/treephys/tpp013.
  • Emberger L. 1954. Une classification biogéographique des climats. Trav Lab Bot Zool Fac Sci Serv Montpellier. 7:3–43.
  • Ethier GJ, Livingston NJ. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell & Environment. 27(2):137–153. doi: 10.1111/j.1365-3040.2004.01140.x.
  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta. 149(1):78–90. doi: 10.1007/BF00386231.
  • Fritschi FB, Ray JD. 2007. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynt. 45(1):92–98. doi: 10.1007/s11099-007-0014-4.
  • Gallé A, Haldimann P, Feller U. 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol. 174(4):799–810. doi: 10.1111/J.1469-8137.2007.02047.X.
  • García-Fayos P, Gasque M. 2002. Consequences of a severe drought on spatial patterns of woody plants in a two-phase mosaic steppe of Stipa tenacissima L. J Arid Environ [Internet]. 52(2):199–208. doi: 10.1006/jare.2002.0987.
  • Giorgi F, Lionello P. 2008. Climate change projections for the Mediterranean region. Glob Planet Change. 63(2-3):90–104. doi: 10.1016/j.gloplacha.2007.09.005.
  • Groom QJ, Baker NR. 1992. Analysis of Light-Induced Depressions of Photosynthesis in Leaves of a Wheat Crop during the Winter. Plant Physiol. 100(3):1217–1223. doi: 10.1104/PP.100.3.1217.
  • Guidi L, Tattini M, Landi M. 2017. How does chloroplast protect chlorophyll against excessive light? Chlorophyll [Internet]. IntechOpen. doi: 10.5772/67887.
  • Haase P, Pugnaire FI, Clark SC, Incoll LD. 1999. Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima. Plant Ecol. 145(2):327–339. doi: 10.1023/A:1009892204336.
  • Haase P, Pugnaire FI, Incoll LD. 1995. Seed production and dispersal in the semi-arid tussock grass Stipa tenacissima L. during masting. J Arid Environ. 31(1):55–65. doi: 10.1006/jare.1995.0048.
  • Hamdani M, Krichen K, Chaieb M. 2019. Predicting leaf trait variability as a functional descriptor of the effect of climate change in three perennial grasses. Diversity. 11(12):233. doi: 10.3390/d11120233.
  • IPCC. 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, Core Writing Team, RK Pachauri and LA Meyer, editors. Geneva, Switzerland: IPCC.
  • IPCC. 2019. Climate Change and Land: an IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for Policymakers, P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte H-OP, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak JP, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi JM, editors. Geneva, Switzerland: IPCC.
  • Kostopoulou P, Karatassiou M. 2016. Photosynthetic response of Bromus inermis in grasslands of different altitudes. Turk J Agric For. 40(4):642–653. doi: 10.3906/tar-1602-50.
  • Krichen K, Ben Mariem H, Chaieb M. 2014. Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. South African J Bot [Internet]. 94:210–217. doi: 10.1016/j.sajb.2014.07.008.
  • Krichen K, Ghorbel MA, Chaieb M. 2023. Modeling the influence of temperature, salt and osmotic stresses on seed germination and survival capacity of Stipa tenacissima L. Plant Biosyst. 157(2):325–338. doi: 10.1080/11263504.2023.2165552.
  • Krichen K, Vilagrosa A, Chaieb M. 2017. Environmental factors that limit Stipa tenacissima L. germination and establishment in Mediterranean arid ecosystems in a climate variability context. Acta Physiol Plant. 39(8):175. doi: 10.1007/s11738-017-2475-9.
  • Krichen K, Vilagrosa A, Chaieb M. 2019. Divergence of functional traits at early stages of development in Stipa tenacissima populations distributed along an environmental gradient of the Mediterranean. Plant Ecol. 220(10):995–1008. doi: 10.1007/s11258-019-00969-2.
  • Kromdijk J, Walter J. 2023. Relaxing non-photochemical quenching (NPQ) to improve photosynthesis in crops. Cambridge: Burleigh Dodds Science Publishing; p. 113–130. [accessed 2024 Feb 21]. doi: 10.19103/as.2022.0119.09.
  • Lavee H, Imeson AC, Sarah P. 1998. The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad Dev. 9(5):407–422. doi: 10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-6.
  • Lawson T, Oxborough K, Morison JIL, Baker NR. 2002. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol. 128(1):52–62. doi: 10.1104/pp.010317.
  • Le Houérou. HN. 1995. Bioclimatologie et biogéographie des steppes arides du Nord de l’Afrique. In: divers Biol développement durable désertification. CIHEM/ACCT Zaragosa: options Méditerranéennes : série B. Etudes Et Recherches . 10:396.
  • Li Q, Deng M, Xiong Y, Coombes A, Zhao W. 2014. Morphological and photosynthetic response to high and low irradiance of aeschynanthus longicaulis. ScientificWorldJournal. 2014:347461. doi: 10.1155/2014/347461.
  • Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. 6(JUN):64. doi: 10.3389/FEVO.2018.00064/BIBTEX.
  • Liu M, Qi H, Zhang ZP, Song ZW, Kou TJ, Zhang WJ, Yu JL. 2012. Response of photosynthesis and chlorophyll fluorescence to drought stress in two maize cultivars. African J Agric Res. 7(34):4751–4760. doi: 10.5897/AJAR12.082.
  • Lobo F de A, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis GL, Rodríguez Ortíz CE. 2013. Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. Photosynt. 51(3):445–456. doi: 10.1007/s11099-013-0045-y.
  • Luo W, Li MH, Sardans J, Lü XT, Wang C, Peñuelas J, Wang Z, Han XG, Jiang Y. 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecol Evol. 7(17):6927–6934. doi: 10.1002/ECE3.3245.
  • Ma J-Y, Sun W, Liu X-N, Chen F-H. 2012. Variation in the stable carbon and nitrogen isotope composition of plants and soil along a precipitation gradient in northern China. PLoS One [Internet]. 7(12):e51894. doi: 10.1371/journal.pone.0051894.
  • Maestre FT, Bautista S, Cortina J. 2006. Stipa tenacissima does not affect the foliar ??13C and ??15N of introduced shrub seedlings in a Mediterranean semi-arid steppe. JIPB. 48(8):897–905. doi: 10.1111/j.1744-7909.2006.00295.x.
  • Manter DK, Kerrigan J. 2004. A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot. 55(408):2581–2588. doi: 10.1093/JXB/ERH260.
  • Munjonji L, Ayisi KK. 2021. Leaf gas exchange and δ13C in cowpea and triticale under water stress and well-watered conditions. Heliyon. 7(5):e07060. doi: 10.1016/J.HELIYON.2021.E07060.
  • Muraoka H, Koizumi H, Pearcy RW. 2003. Leaf display and photosynthesis of tree seedlings in a cool-temperate deciduous broadleaf forest understorey. Oecologia. 135(4):500–509. doi: 10.1007/S00442-003-1227-2/.
  • Ogaya R, Peñuelas J. 2008. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecologica. 34(3):331–338. doi: 10.1016/j.actao.2008.06.005.
  • Onoda Y, Hikosaka K, Hirose T. 2005. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. J Exp Bot. 56(412):755–763. doi: 10.1093/JXB/ERI052.
  • Phillips SB, Aneja VP, Kang D, Arya SP. 2006. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. IJGENVI. 6(2/3):231–252. doi: 10.1016/j.ecolmodel.2005.03.026.
  • Pugnaire FI, Haase P, Incoll L, Clark SC. 1996. Response of the tussock grass Stipa tenacissima to watering in a semi-arid environment. Funct Ecol [Internet]. 10(2):265–274. http://iis1.eeza.csic.es/eeza/documentos/FEco96 306.pdf. doi: 10.2307/2389852.
  • Querejeta JI, Prieto I, Armas C, Casanoves F, Diémé JS, Diouf M, Yossi H, Kaya B, Pugnaire FI, Rusch GM. 2022. Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. New Phytol. 235(4):1351–1364. doi: 10.1111/nph.18254.
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Ramírez D a, Bellot J, Domingo F, Blasco A. 2006a. Can water responses in Stipa tenacissima L. during the summer season be promoted by non-rainfall water gains in soil? Plant Soil. 291(1–2):67–79. doi: 10.1007/s11104-006-9175-3.
  • Ramírez D a, Bellot J, Domingo F, Blasco A. 2007. Stand transpiration of Stipa tenacissima grassland by sequential scaling and multi-source evapotranspiration modelling. J Hydrol [Internet]. 342(1–2):124–133. doi: 10.1016/j.jhydrol.2007.05.018.
  • Ramírez D a, Valladares F, Blasco A, Bellot J. 2006b. Assessing transpiration in the tussock grass Stipa tenacissima L.: the crucial role of the interplay between morphology and physiology. Acta Oecologica [Internet]. 30(3):386–398. doi: 10.1016/j.actao.2006.06.006.
  • Ramírez D a, Valladares F, Domingo F, Bellot J. 2008. Seasonal water-use efficiency and chlorophyll fluorescence response in alpha grass (Stipa tenacissima L.) is affected by tussock size. Photosynt. 46(2):222–231. doi: 10.1007/s11099-008-0036-6.
  • Ribeiro R, Machado E, Oliveira R. 2006. Temperature response of photosynthesis and its interaction with light intensity in sweet orange leaf discs under non-photorespiratory condition. Ciênc Agrotec. 30(4):670–678. doi: 10.1590/S1413-70542006000400012.
  • Ritchie RJ. 2008. Fitting light saturation curves measured using modulated fluorometry. Photosynth Res. 96(3):201–215. doi: 10.1007/s11120-008-9300-7.
  • Rogers A, Kumarathunge DP, Lombardozzi DL, Medlyn BE, Serbin SP, Walker AP. 2021. Triose phosphate utilization limitation: an unnecessary complexity in terrestrial biosphere model representation of photosynthesis. New Phytol. 230(1):17–22. doi: 10.1111/nph.17092.
  • Ruiz-Navarro A, Barberá GG, Albaladejo J, Querejeta JI. 2016. Plant δ15N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystem. New Phytol. 212(4):1030–1043. doi: 10.1111/nph.14091.
  • Schulze ED, Turner NC, Nicolle D, Schumacher J. 2006. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26(4):479–492. doi: 10.1093/treephys/26.4.479.
  • Shafiq I, Hussain S, Raza MA, Iqbal N, Asghar MA, Raza A, Fan Y-f, Mumtaz M, Shoaib M, Ansar M, et al. 2021. Crop photosynthetic response to light quality and light intensity. J Integr Agric. 20(1):4–23. doi: 10.1016/S2095-3119(20)63227-0.
  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL. 2007. Fitting photosynthetic carbon dioxide response curves for C 3 leaves. Plant Cell Environ. 30(9):1035–1040. doi: 10.1111/j.1365-3040.2007.01710.x.
  • Song X, Zhou G, Xu Z, Lv X, Wang Y. 2016. A self-photoprotection mechanism helps Stipa baicalensis adapt to future climate change. Sci Rep. 6(1):1–9. doi: 10.1038/srep25839.
  • Spangenberg JE, Schweizer M, Zufferey V. 2021. Carbon and nitrogen stable isotope variations in leaves of two grapevine cultivars (Chasselas and Pinot noir): Implications for ecophysiological studies. Plant Physiol Biochem. 163:45–54. doi: 10.1016/J.PLAPHY.2021.03.048.
  • Tubuxin B, Rahimzadeh-Bajgiran P, Ginnan Y, Hosoi F, Omasa K. 2015. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves. J Exp Bot. 66(18):5595–5603. doi: 10.1093/JXB/ERV272.
  • Valladares F, Pugnaire FI. 1999. Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model. Ann Bot. 83(4):459–469. doi: 10.1006/anbo.1998.0843.
  • Verma KK, Song XP, Verma CL, Malviya MK, Guo DJ, Rajput VD, Sharma A, Wei KJ, Chen GL, Solomon S, et al. 2021. Predication of Photosynthetic Leaf Gas Exchange of Sugarcane (Saccharum spp) Leaves in Response to Leaf Positions to Foliar Spray of Potassium Salt of Active Phosphorus under Limited Water Irrigation. ACS Omega [Internet]. 6(3):2396–2409. doi: 10.1021/ACSOMEGA.0C05863/ASSET/IMAGES/MEDIUM/AO0C05863_M003.GIF.
  • Vitória AP, Ávila-Lovera E, de Oliveira Vieira T, do Couto-Santos APL, Pereira TJ, Funch LS, Freitas L, de Miranda LdP, Rodrigues PJFP, Rezende CE, et al. 2018. Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) of deciduous and evergreen understorey trees in two tropical Brazilian Atlantic forests. J Trop Ecol. 34(2):145–156. doi: 10.1017/S0266467418000093.
  • von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta [Internet]. 153(4):376–387. doi: 10.1007/BF00384257.
  • von Caemmerer S. 2000. Biochemical models of leaf photosynthesis. CSIRO Publishing. doi: 10.1071/9780643103405.
  • Warren CR, Dreyer E. 2006. Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot. 57(12):3057–3067. doi: 10.1093/JXB/ERL067.
  • Warren CR. 2008. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot. 59(7):1475–1487. doi: 10.1093/jxb/erm245.
  • Xu L, Baldocchi DD. 2003. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23(13):865–877. doi: 10.1093/treephys/23.13.865.
  • Yan H, Liu Z, Sun H. 2020. Large degrees of carbon isotope disequilibrium during precipitation-associated degassing of CO2 in a mountain stream. Geochim Cosmochim Acta. 273:244–256. doi: 10.1016/j.gca.2020.01.012.
  • Yohannes E, Franke L, Rothhaupt KO. 2014. Zebra mussel δ13C and δ15N as a proxy for depth-specific pelagic isotope profiles and lake temperature. Hydrobiologia [Internet]. 731(1):191–198. doi: 10.1007/s10750-013-1786-0.
  • Zhang Q, Zhang TJ, Chow WS, Xie X, Chen YJ, Peng CL. 2015. Photosynthetic characteristics and light energy conversions under different light environments in five tree species occupying dominant status at different stages of subtropical forest succession. Funct Plant Biol. 42(7):609–619. doi: 10.1071/FP14355.
  • Zheng Y, Zhao Z, Zhou H, Zhou JJ. 2012. Effects of slope aspects and stand age on the photosynthetic and physiological characteristics of the black locust (Robinia pseudoacacia L.) on the loess plateau. Pakistan J Bot. 44(3):939–948.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.