43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Assessment of the potential habitat suitability and ephedrine quality of two Ephedra species in China under climate change

, ORCID Icon, , , , , , , & ORCID Icon show all
Pages 479-489 | Received 18 Jul 2023, Accepted 26 Feb 2024, Published online: 12 Mar 2024

References

  • Abdelaal M, Fois M, Fenu G, Bacchetta G. 2019. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol Inform. 50:68–75. doi: 10.1016/j.ecoinf.2019.01.003.
  • Applequist WL, Brinckmann JA, Cunningham AB, Hart RE, Heinrich M, Katerere DR, van Andel T. 2020. Scientistsʼ warning on climate change and medicinal plants. Planta Med. 86(1):10–18. doi: 10.1055/a-1041-3406.
  • Boria RA, Olson LE, Goodman SM, Anderson RP. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol modell. 275:73–77. doi: 10.1016/j.ecolmodel.2013.12.012.
  • Brown JL. 2014. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol. 5(7):694–700. doi: 10.1111/2041-210X.12200.
  • Chen XL, Cui YX, Nie LP, Hu HY, Xu ZC, Sun W, Gao T, Song JY, Yao H. 2019. Identification and phylogenetic analysis of the complete chloroplast genomes of three Ephedra herbs containing ephedrine. Biomed Res Int. 2019:5921725. doi: 10.1155/2019/5921725.
  • Commission CP. 2020. Pharmacopoeia of the People’s Republic of China. Vol. I. Beijing: China Medical Science Press; p. 333–334.
  • Flora of China Editorial Committee of Chinese Academy of Sciences. 1978. Flora of China. Vol. 7. Beijing: Science Press; p. 474–478.
  • Fourcade Y, Engler JO, Rödder D, Secondi J. 2014. Mapping species distributions with Maxent using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One. 9(5):e97122. doi: 10.1371/journal.pone.0097122.
  • Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S. 2018. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ. 41(6):1233–1246. doi: 10.1111/pce.13206.
  • Hamedani S, Asri Y, Mehregan I. 2021. Determinant effects of environmental factors on morphology and ephedrine contents in the wild populations of Ephedra major Host. An Univ din Oradea Fasc Biol. 28:47–54.
  • He P, Li JY, Li YF, Xu N, Gao Y, Guo LF, Huo TT, Peng C, Meng FY. 2021. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol Indic. 133:108399. doi: 10.1016/j.ecolind.2021.108399.
  • IPCC. 2014. Core writing team. In: Pachauri RK, Meyer LA, editors. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC; p. 151.
  • IUCN. 2004. IUCN red list of threatened species. Di sponí vel em: http://www.iucnredlist.org/info/categories_criteria2001.html
  • Jayasinghe SL, Kumar L. 2019. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric For Meteorol. 272–273:102–117. doi: 10.1016/j.agrformet.2019.03.025.
  • Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker AR, Tsigaridis K, Mihalopoulos N. 2016. Past, present, and future atmospheric nitrogen deposition. J Atmos Sci. 73(5):2039–2047. doi: 10.1175/JAS-D-15-0278.1.
  • Kong F, Tang L, He H, Yang FX, Tao J, Wang WC. 2021. Assessing the impact of climate change on the distribution of Osmanthus fragrans using Maxent. Environ Sci Pollut Res Int. 28(26):34655–34663. doi: 10.1007/s11356-021-13121-3.
  • Kudo Y, Umemoto K, Obata T, Kaneda A, Ni SR, Mikage M, Sasaki Y, Ando H. 2023. Seasonal variation of alkaloids and polyphenol in Ephedra sinica cultivated in Japan and controlling factors. J Nat Med. 77(1):137–151. doi: 10.1007/s11418-022-01656-9.
  • Li J, Yu Y, Guo LP, Huang LQ, Zhang XB, Yang J. 2019a. Study on quality regionalization of Lycii Fructus. China J Chin Mater Med. 44(06):1156–1163. (in Chinese).
  • Li JJ, Fan G, He Y. 2020. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci Total Environ. 698:134141. doi: 10.1016/j.scitotenv.2019.134141.
  • Li JJ, Wu J, Peng KZ, Fan G, Yu HQ, Wang WG, He Y. 2019b. Simulating the effects of climate change across the geographical distribution of two medicinal plants in the genus Nardostachys. PeerJ. 7:e6730. doi: 10.7717/peerj.6730.
  • Liu L, Wang RL, Zhang YY, Mou QY, Gou YS, Liu K, Huang N, Ouyang CL, Hu JY, Du BG. 2021. Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecol.Indic. 133:108396. doi: 10.1016/j.ecolind.2021.108396.
  • Lobo JM, Jiménez-Valverde A, Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 17(2):145–151. doi: 10.1111/j.1466-8238.2007.00358.x.
  • Ma XH, Lu YY, Huang DD, Zhu TT, Lv PL, Jing L. 2017. Ecology suitability study of Ephedra intermedia. China J Chin Mater Med. 42(11):2068–2071. (in Chinese).
  • Man DQ, Liao KT. 2003. Research on habitat and cultivation factors of Ephedra intermedia in Hexi desert area. J Gansu Agric Univ. 38(01):84–88. (in Chinese).
  • Mi XC, Feng G, Hu YB, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi SH. 2021. The global significance of biodiversity science in China: an overview. Natl Sci Rev. 8(7):nwab032.
  • Minami M, Mori T, Honda Y, Ueno K, Murakami T, Ajioka Y, Atsumi T, Joshi KJ, Yadav PM, Kandel DR, et al. 2020. Physical and chemical characteristics of soils in Ephedra gerardiana and E. pachyclada habitats of Kali Gandaki Valley in Central Nepal. J Nat Med. 74:825–833. doi: 10.1007/s11418-020-01413-w.
  • Parsaeimehr A, Sargsyan E, Javidnia K. 2010. A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules. 15(3):1668–1678. doi: 10.3390/molecules15031668.
  • Patni B, Bhattacharyya M, Kumari A, Purohit VK. 2021. Alarming influence of climate change and compromising quality of medicinal plants. Plant Physiol Rep. 27(1):1–10. doi: 10.1007/s40502-021-00616-x.
  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr. 34(1):102–117. doi: 10.1111/j.1365-2699.2006.01594.x.
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model. 190(3–4):231–259. doi: 10.1016/j.ecolmodel.2005.03.026.
  • Porwal MC, Sharma L, Roy PS. 2003. Stratification and mapping of Ephedra gerardiana Wall. in Poh (Lahul and Spiti) using remote sensing and GIS. Curr Sci. 84:208–212.
  • Schnase JL, Carroll ML, Gill RL, Tamkin GS, Li J, Strong SL, Maxwell TP, Aronne ME, Spradlin CS. 2021. Toward a Monte Carlo approach to selecting climate variables in MaxEnt. PLoS One. 16(3):e0237208. doi: 10.1371/journal.pone.0237208.
  • Shen LT, Zhang FM, Huang J, Li, YPLY. 2022a. Spatiotemporal variations of different precipitation grades in Inner Mongolia from 1981 to 2018. J Meteorol Sci. 42(22):162–170. (in Chinese).
  • Shen T, Yu H, Wang YZ. 2021. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: take Gentiana rigescens as an example. Ecol Indic. 123:107376. doi: 10.1016/j.ecolind.2021.107376.
  • Shen YF, Tu ZH, Zhang YL, Zhong WP, Xia H, Hao ZY, Zhang CG, Li HG. 2022b. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. J Environ Manage. 322:116024. doi: 10.1016/j.jenvman.2022.116024.
  • Shu YX, Sun KF, Xu WF, Chen YR, Sun QW, Wang B. 2023. Ecology suitability and quality regionalization analysis on Miao medicine Laportea bulbifera. Chin J Exp Form. 29(03):160–169. (in Chinese).
  • Sui HJ, Wang J, Li JY. 2010. Climatic regionalization of Ephedra in Arhorqin Banner. J North Agric. 38(05):72–73. (in Chinese).
  • Sun SX, Zhang Y, Huang DZ, Wang H, Cao Q, Fan PX, Yang N, Zheng PM, Wang RQ. 2020. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci Total Environ. 744:140786. doi: 10.1016/j.scitotenv.2020.140786.
  • Sun X, Pei J, Zhao L, Ahmad B, Huang LF. 2021. Fighting climate change: soil bacteria communities and topography play a role in plant colonization of desert areas. Environ Microbiol. 23(11):6876–6894. doi: 10.1111/1462-2920.15799.
  • Sun YM, Alseekh S, Fernie AR. 2023. Plant secondary metabolic responses to global climate change: a meta-analysis in medicinal and aromatic plants. Glob Chang Biol. 29(2):477–504. doi: 10.1111/gcb.16484.
  • Tu WQ, Xiong QL, Qiu XP, Zhang YM. 2021. Dynamics of invasive alien plant species in China under climate change scenarios. Ecol Indic. 129:107919. doi: 10.1016/j.ecolind.2021.107919.
  • Verma N, Shukla S. 2015. Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Plants. 2(4):105–113.
  • Wakie TT, Evangelista PH, Jarnevich CS, Laituri M. 2014. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia. PLoS One. 9(11):e112854. doi: 10.1371/journal.pone.0112854.
  • Wan JZ, Wang CJ, Yu JH, Nie SM, Han SJ, Liu JZ, Zu YG, Wang QG. 2016. Developing conservation strategies for Pinus koraiensis and Eleutherococcus senticosus by using model-based geographic distributions. J For Res. 27(2):389–400. doi: 10.1007/s11676-015-0170-5.
  • Wang JY. 2022. The evolution law of precipitation in Xinjiang under the influence of climate change. Water Resour Plan Des. 225(07):25–30. (in Chinese).
  • Wang LL, Kakiuchi N, Mikage M. 2010. Studies of Ephedra plants in Asia. Part 6: geographical changes of anatomical features and alkaloids content of Ephedra sinica. J Nat Med. 64:63–69. doi: 10.1007/s11418-009-0374-0.
  • Wang XL, Guan XL. 2019. Artificial cultivation of Ephedra herb. Inner Mongolia For Invest Des. 42(02):19–21.
  • Wang Y, Zhang L, Du ZX, Pei J, Huang LF. 2019. Chemical diversity and prediction of potential cultivation areas of Cistanche herbs. Sci Rep. 9:19737. doi: 10.1038/s41598-019-56379-x.
  • Wei YQ, Zhang L, Wang JN, Wang WW, Niyati N, Guo YL, Wang XF. 2021. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Sci Total Environ. 755:142548. doi: 10.1016/j.scitotenv.2020.142548.
  • Xu W, Zhu SM, Yang TL, Cheng JM, Jin JW. 2022a. Maximum entropy niche-based modeling for predicting the potential suitable habitats of a traditional medicinal plant (Rheum nanum) in Asia under climate change conditions. Agriculture. 12(5):610. doi: 10.3390/agriculture12050610.
  • Xu WQ, Cheng YL, Guo YH, Yao WR, Qian H. 2022b. Effects of geographical location and environmental factors on metabolite content and immune activity of Echinacea purpurea in China based on metabolomics analysis. Ind Crops Prod. 189:115782. doi: 10.1016/j.indcrop.2022.115782.
  • Yue JQ, Li ZM, Zuo ZT, Wang YZ. 2022. Evaluation of ecological suitability and quality suitability of Panax notoginseng under multi-regionalization modeling theory. Front Plant Sci. 13:818376. doi: 10.3389/fpls.2022.818376.
  • Zhang CX, Zhang W, Xu JJ, Yang XB. 2020. Analysis of suitability distribution of Pinus tabulaeformis in Hebei province based on GIS and MaxEnt model. Geogr Geo-Info Sci. 36(06):18–25. (in Chinese).
  • Zhang K, Liu ZY, Abdukeyum N, Ling YB. 2022. Potential geographical distribution of medicinal plant Ephedra sinica Stapf under climate change. Forests. 13(12):2149. doi: 10.3390/f13122149.
  • Zhang ZX, Capinha C, Weterings R, McLay CL, Xi D, Lü HJ, Yu LY. 2019. Ensemble forecasting of the global potential distribution of the invasive Chinese mitten crab, Eriocheir sinensis. Hydrobiologia. 826(1):367–377. doi: 10.1007/s10750-018-3749-y.
  • Zhou YC, Zhang ZX, Zhu B, Cheng XF, Yang L, Gao MK, Kong R. 2021. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China. Forests. 12(6):752. doi: 10.3390/f12060752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.