103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Intracellular and extracellular thiol-peptides modulate the response of Marchantia polymorpha to physiological needs, excess, and starvation of zinc, copper, and iron

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 754-762 | Received 25 Mar 2024, Accepted 15 May 2024, Published online: 13 Jun 2024

References

  • Ares Á, Itouga M, Kato Y, Sakakibara H. 2018. Differential metal tolerance and accumulation patterns of Cd, Cu, Pb and Zn in the liverwort Marchantia polymorpha L. Bull Environ Contam Toxicol. 100(3):444–450. doi: 10.1007/s00128-017-2241-0.
  • Bellini E, Bandoni E, Giardini S, Sorce C, Spanò C, Bottega S, Fontanini D, Kola A, Valensin D, Bertolini A, et al. 2023. Glutathione and phytochelatins jointly allow intracellular and extracellular detoxification of cadmium in the liverwort Marchantia polymorpha. Environ Exp Bot. 209:105303. doi: 10.1016/j.envexpbot.2023.105303.
  • Bellini E, Betti C, Sanità di Toppi L. 2021. Responses to cadmium in early-diverging streptophytes (charophytes and bryophytes): current views and potential applications. Plants. 10(4):770. doi: 10.3390/plants10040770.
  • Bellini E, Borsò M, Betti C, Bruno L, Andreucci A, Ruffini Castiglione M, Saba A, Sanità di Toppi L. 2019. Characterization and quantification of thiol-peptides in Arabidopsis thaliana using combined dilution and high sensitivity HPLC-ESI-MS-MS. Phytochemistry. 164:215–222. doi: 10.1016/j.phytochem.2019.05.007.
  • Bellini E, Maresca V, Betti C, Castiglione MR, Fontanini D, Capocchi A, Sorce C, Borsò M, Bruno L, Sorbo S, et al. 2020. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. IJMS. 21(5):1583. doi: 10.3390/ijms21051583.
  • Bellini E, Varotto C, Borsò M, Rugnini L, Bruno L, Sanità di Toppi L. 2020. Eukaryotic and prokaryotic phytochelatin synthases differ less in functional terms than previously thought: a comparative analysis of Marchantia polymorpha and Geitlerinema sp. PCC 7407. Plants (Basel). 9(7):914. doi: 10.3390/plants9070914.
  • Bowman JL, Araki T, Arteaga-Vazquez MA, Berger F, Dolan L, Haseloff J, Ishizaki K, Kyozuka J, Lin S-S, Nagasaki H, et al. 2016. The naming of names: guidelines for gene nomenclature in Marchantia. Plant Cell Physiol. 57(2):257–261. doi: 10.1093/pcp/pcv193.
  • Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, et al. 2022. The renaissance and enlightenment of Marchantia as a model system. Plant Cell. 34(10):3512–3542. doi: 10.1093/plcell/koac219.
  • Chen G, Li J, Han H, Du R, Wang X. 2022. Physiological and molecular mechanisms of plant responses to copper stress. IJMS. 23(21):12950. doi: 10.3390/ijms232112950.
  • Clemens S. 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88(11):1707–1719. doi: 10.1016/j.biochi.2006.07.003.
  • Clemens S, Peršoh D. 2009. Multi-tasking phytochelatin synthases. Plant Sci. 177(4):266–271. doi: 10.1016/j.plantsci.2009.06.008.
  • Cobbett CS. 1999. A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci. 4(9):335–337. doi: 10.1016/S1360-1385(99)01465-X.
  • Connorton JM, Balk J, Rodríguez-Celma J. 2017. Iron homeostasis in plants – a brief overview. Metallomics. 9(7):813–823. doi: 10.1039/C7MT00136C.
  • Degola F, De Benedictis M, Petraglia A, Massimi A, Fattorini L, Sorbo S, Basile A, Sanità di Toppi L. 2014. A Cd/Fe/Zn-responsive phytochelatin synthase is constitutively present in the ancient liverwort Lunularia cruciata (L.) Dumort. Plant Cell Physiol. 55(11):1884–1891. doi: 10.1093/pcp/pcu117.
  • Fontanini D, Andreucci A, Ruffini Castiglione M, Basile A, Sorbo S, Petraglia A, Degola F, Bellini E, Bruno L, Varotto C, et al. 2018. The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron(II)/(III). Plant Physiol Biochem. 127:88–96. doi: 10.1016/j.plaphy.2018.03.014.
  • Frémont A, Sas E, Sarrazin M, Gonzalez E, Brisson J, Pitre FE, Brereton NJB. 2022. Phytochelatin and coumarin enrichment in root exudates of arsenic-treated white lupin. Plant Cell Environ. 45(3):936–954. doi: 10.1111/pce.14163.
  • Grill E, Löffler S, Winnacker E-L, Zenk MH. 1989. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A. 86(18):6838–6842. doi: 10.1073/pnas.86.18.6838.
  • Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, et al. 2014. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol. 10(12):1034–1042. doi: 10.1038/nchembio.1662.
  • Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T. 2013. Homologous recombination-mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep. 3(1):1532. doi: 10.1038/srep01532.
  • Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. 2023. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. Funct Plant Biol. 50(11):870–888. Wu H, editor. doi: 10.1071/FP23021.
  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A. 2012. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 13(3):3145–3175. doi: 10.3390/ijms13033145.
  • Küpper H, Andresen E. 2016. Mechanisms of metal toxicity in plants. Metallomics. 8(3):269–285. doi: 10.1039/C5MT00244C.
  • Li M, Barbaro E, Bellini E, Saba A, Sanità di Toppi L, Varotto C. 2020. Ancestral function of the phytochelatin synthase C-terminal domain in inhibition of heavy metal-mediated enzyme overactivation. Cuypers A, editor. J Exp Bot. 71(20):6655–6669. doi: 10.1093/jxb/eraa386.
  • Li M, Leso M, Buti M, Bellini E, Bertoldi D, Saba A, Larcher R, Sanità di Toppi L, Varotto C. 2022. Phytochelatin synthase de-regulation in Marchantia polymorpha indicates cadmium detoxification as its primary ancestral function in land plants and provides a novel visual bioindicator for detection of this metal. J Hazard Mater. 440:129844. doi: 10.1016/j.jhazmat.2022.129844.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262.
  • Mackiewicz P, Gagat P. 2014. Monophyly of Archaeplastida supergroup and relationships among its lineages in the light of phylogenetic and phylogenomic studies. Are we close to a consensus? Acta Soc Bot Pol. 83(4):263–280. doi: 10.5586/asbp.2014.044.
  • Marschner H. 2012. Marschner’s mineral nutrition of higher plants. New York: Academic Press.
  • Petraglia A, De Benedictis M, Degola F, Pastore G, Calcagno M, Ruotolo R, Mengoni A, Sanità di Toppi L. 2014. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J Exp Bot. 65(4):1153–1163. doi: 10.1093/jxb/ert472.
  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F. 2009. Essential transition metal homeostasis in plants. Curr Opin Plant Biol. 12(3):347–357. doi: 10.1016/j.pbi.2009.04.011.
  • Rea PA. 2012. Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant. 145(1):154–164. doi: 10.1111/j.1399-3054.2012.01571.x.
  • Rea PA, Vatamaniuk OK, Rigden DJ. 2004. Weeds, worms, and more. papain’s long-lost cousin, phytochelatin synthase. Plant Physiol. 136(1):2463–2474. doi: 10.1104/pp.104.048579.
  • Romanyuk ND, Rigden DJ, Vatamaniuk OK, Lang A, Cahoon RE, Jez JM, Rea PA. 2006. Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant Physiol. 141(3):858–869. doi: 10.1104/pp.106.082131.
  • Saint-Marcoux D, Proust H, Dolan L, Langdale JA. 2015. Identification of reference genes for real time quantitative PCR experiments in the liverwort Marchantia polymorpha. PLoS ONE 10(3): e0118678. doi:10.1371/journal.pone.0118678.
  • Sanità di Toppi L, Gabbrielli R. 1999. Response to cadmium in higher plants. Environ Exp Bot. 41(2):105–130. doi: 10.1016/S0098-8472(98)00058-6.
  • Satofuka H, Fukui T, Takagi M, Atomi H, Imanaka T. 2001. Metal-binding properties of phytochelatin-related peptides. J Inorg Biochem. 86(2-3):595–602. doi: 10.1016/S0162-0134(01)00223-9.
  • Seregin IV, Kozhevnikova AD. 2023. Phytochelatins: sulfur-containing metal(loid)-chelating ligands in plants. IJMS. 24(3):2430. doi: 10.3390/ijms24032430.
  • Shimamura M. 2016. Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol. 57(2):230–256. doi: 10.1093/pcp/pcv192.
  • Song W-Y, Park J, Eisenach C, Maeshima M, Lee Y, Martinoia E. 2014. ABC transporters and heavy metals. In: Geisler M, editor. Plant ABC transporters. Cham: springer International Publishing; p. 1–17. doi: 10.1007/978-3-319-06511-3_1.
  • Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. 2023. Photosynthetic efficiency of Marchantia polymorpha L. in response to copper, iron, and zinc. Plants (Basel). 12(15):2776. doi: 10.3390/plants12152776.
  • Strenkert D, Schmollinger S, Hu Y, Hofmann C, Holbrook K, Liu HW, Purvine SO, Nicora CD, Chen S, Lipton MS, et al. 2023. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine. Metallomics. 15(7):mfad043. doi: 10.1093/mtomcs/mfad043.
  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S. 2009. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol. 149(2):938–948. doi: 10.1104/pp.108.127472.
  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA. 2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem. 275(40):31451–31459. doi: 10.1074/jbc.M002997200.
  • Vivares D, Arnoux P, Pignol D. 2005. A papain-like enzyme at work: native and acyl-enzyme intermediate structures in phytochelatin synthesis. Proc Natl Acad Sci U S A. 102(52):18848–18853. doi: 10.1073/pnas.0505833102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.