28
Views
0
CrossRef citations to date
0
Altmetric
Articles

Granular knowledge and rational approximation in general rough sets – I

Pages 294-329 | Received 13 Jun 2023, Accepted 05 Dec 2023, Published online: 03 Apr 2024

References

  • Abo-Tabl, A. (2011). A comparison of two kinds of definitions of rough approximations based on a similarity relation. Information Sciences, 181(12), 2587–2596. https://doi.org/10.1016/j.ins.2011.01.007
  • Al-shami, T. M., & Ciucci, D. (2022). Subset neighbourhood rough sets. Knowledge-Based Systems, 237, 107868. https://doi.org/10.1016/j.knosys.2021.107868
  • Allam, A., Bakeir, M., & Abo-Tabl, E. (2006). New approach for closure spaces by relations. Acta Mathematica Academiae Paedagogicae Nyiregyháziensis, 22, 285–304.
  • Allam, A., Bakeir, M. Y., & Abo-Tabl, E. A. (2008). Some methods for generating topologies by relations. The Bulletin of the Malaysian Mathematical Society Series, 31(2), 35–45.
  • Atef, M., Khalil, A., Li, S., Azzam, A., & Atik, A. E. (2020). Comparison of six types of rough approximations based on J-Neighborhood space and J-Adhesion neighborhood space. Journal of Intelligent Fuzzy Systems, 39(3), 4515–4531. https://doi.org/10.3233/JIFS-200482
  • Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
  • Banerjee, M., & Chakraborty, M. K. (2004). Algebras from rough sets – An overview. In S. K. Pal, L. Polkowski, & A. Skowron (Eds.), Rough-neural computing (pp. 157–184). Springer Verlag.
  • Banerjee, M., & Khan, M. A. (2007). Propositional logics for rough set theory. In Transactions on rough sets VI, LNCS 4374 (pp. 1–25). Springer Verlag.
  • Burkhardt, H., Seibt, J., Imaguire, G., & Gerogiorgakis, S. (2017). Handbook of mereology. Philosophia Verlag.
  • Burmeister, P. (1986). A model-theoretic oriented approach to partial algebras. Akademie-Verlag.
  • Cattaneo, G. (1998). Abstract approximation spaces for rough set theory. In L. Polkowski, & A. Skowron (Eds.), Rough sets in knowledge discovery 2 (pp. 59–98). Physica Heidelberg.
  • Cattaneo, G., & Ciucci, D. (2004). Algebras for rough sets and fuzzy logics. Transactions on Rough Sets, 2(LNCS 3100), 208–252.
  • Cattaneo, G., & Ciucci, D. (2018). Algebraic methods for orthopairs and induced rough approximation spaces. In A. Mani, I. Düntsch, & G. Cattaneo (Eds.), Algebraic methods in general rough sets (pp. 553–640). Birkhauser Basel.
  • Chajda, I., Niederle, J., & Zelinka, B. (1976). On existence conditions for compatible tolerances. Czechoslovak Mathematical Journal, 26, 304–311. https://doi.org/10.21136/CMJ
  • Chakraborty, M. K. (2016). On some issues in the foundation of rough sets: The problem of definition. Fundamenta Informaticae, 148, 123–132. https://doi.org/10.3233/FI-2016-1426
  • Chen, J., van Ditmarsch, H., Greco, G., & Tzimoulis, A. (2021). Neighbourhood semantics for graded modal logic. arXiv 2105.09202.
  • Ciucci, D., Dubois, D., & Prade, H. (2012). Oppositions in rough set theory. In T. Li, H. S. Nguyen, G. Wang, J. Grzymala-Busse, R. Janicki, A. E. Hassanien, & H. Yu (Eds.), Rough sets and knowledge technology RSKT'2012, LNAI 7414 (pp. 504–513). Springer-Verlag.
  • Cotnoir, A. J., & Varzi, A. (2021). Mereology. Oxford University Press.
  • Duda, J., & Chajda, I. (1977). Ideals of binary relational systems. Casopis Pro Pestovani Matematiki, 102(3), 280–291.
  • Dujmovic, J. (2018). Soft computing evaluation logic. Wiley.
  • Düntsch, I., & Orłowska, E. (2011). Discrete dualities for double stone algebras. Studia Logica, 99(1), 127–142. https://doi.org/10.1007/s11225-011-9349-8
  • Felisiak, P. A., Qin, K., & Li, G. (2020). Generalized multiset theory. Fuzzy Sets and Systems, 380, 104–130. https://doi.org/10.1016/j.fss.2019.05.015
  • Freese, R., Mckenzie, R., McNulty, G., & Taylor, W. (2022). Algebra lattices, varieties: Volume 2 (1st ed.). AMS.
  • Godoy, D., & Tommasel, A. (2021). Is my model biased? Exploring unintended bias in misogyny detection tasks. In Ceur workshop proceedings (Vol. 2942, pp. 97–111). RWTH Aachen University.
  • Grzegorczyk, A. (1955). The systems of Lesniewski in relation to contemporary logical research. Studia Logica, 3, 77–95. https://doi.org/10.1007/BF02067248
  • Gumm, H., & Ursini, A. (1984). Ideals in universal algebras. Algebra Universalis, 19, 45–54. https://doi.org/10.1007/BF01191491
  • Jacobs, G. M., Renandya, W. A., & Power, A. (2016). Simple, powerful strategies for student centered learning. Springer Nature.
  • Janicki, R., & Le, D. T. (2007). Towards a pragmatic mereology. Fundamenta Informaticae, 75(1-4), 295–314.
  • Järvinen, J., Pagliani, P., & Radeleczki, S. (2012). Information completeness in Nelson algebras of rough sets induced by quasiorders. Studia Logica, 101, 1073–1092. https://doi.org/10.1007/s11225-012-9421-z
  • Järvinen, J., & Radeleczki, S. (2017). Representing regular pseudocomplemented Kleene algebras by tolerance-based rough sets. Journal of The Australian Mathematical Society, 105(1), 1–22.
  • Kandil, A., Yakout, M., & Zakaria, A. (2016). New approaches of rough sets via ideals. In S. J. John (Ed.), Handbook of research on generalized and hybrid set structures and applications for soft computing (pp. 247–264). IGI Global.
  • Kolodny, N., & Brunero, J. (2020). Instrumental rationality. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Stanford University.
  • Lewis, D. K. (1991). Parts of classes. Basil Blackwell.
  • Lin, T. Y. (2009). Granular computing-1: The concept of granulation and its formal model. International Journal of Granular Computing, Rough Sets and Int Systems, 1(1), 21–42.
  • Lin, T., & Liu, Q. (1994). Rough approximate operators: Axiomatic rough set theory. In W. Ziarko (Ed.), Rough sets, fuzzy sets and knowledge discovery (pp. 256–260). Springer.
  • Liu, G. (2006). The axiomatization of the rough set upper approximation operations. Fundamenta Informaticae, 69(23), 331–342.
  • Ljapin, E. S. (1996). Partial algebras and their applications. Academic, Kluwer.
  • Maffezioli, P., & Varzi, A. (2021). Intuitionist mereology. Synthese, 198(S4), 277–302.
  • Mani, A. (2005). Super rough semantics. Fundamenta Informaticae, 65(3), 249–261.
  • Mani, A. (2009). Algebraic semantics of similarity-based Bitten rough set theory. Fundamenta Informaticae, 97(1–2), 177–197. https://doi.org/10.3233/FI-2009-196
  • Mani, A. (2011). Choice inclusive general rough semantics. Information Sciences, 181(6), 1097–1115. https://doi.org/10.1016/j.ins.2010.11.016
  • Mani, A. (2012). Dialectics of counting and the mathematics of vagueness. Transactions on Rough Sets, 15(LNCS 7255), 122–180. https://doi.org/10.1007/978-3-642-31903-7
  • Mani, A. (2013). Approximation dialectics of proto-transitive rough sets. In M. K. Chakraborty, A. Skowron, & S. Kar (Eds.), Facets of uncertainties and applications (pp. 99–109). Springer.
  • Mani, A. (2014). Ontology, rough Y-systems and dependence. International Journal of Computer Science and Applications, 11(2), 114–136. Special Issue of IJCSA on Computational Intelligence.
  • Mani, A. (2015). Antichain based semantics for rough sets. In D. Ciucci, G. Wang, S. Mitra, & W. Wu (Eds.), 2015 Rough sets and knowledge technology (pp. 319–330). Springer-Verlag.
  • Mani, A. (2016). Algebraic semantics of proto-transitive rough sets. Transactions on Rough Sets, 20(LNCS 10020), 51–108. https://doi.org/10.1007/978-3-662-53611-7
  • Mani, A. (2017a). Generalized ideals and co-granular rough sets. In L. Polkowski, Y. Yao, P. Artiemjew, D. Ciucci, D. Liu, D. Slezak, & B. Zielosko (Eds.), Rough sets, Part 2, IJCRS, 2017 (pp. 23–42). Springer International.
  • Mani, A. (2017b). Knowledge and consequence in AC semantics for general rough sets. In G. Wang, A. Skowron, Y. Yao, D. Slezak, & L. Polkowski (Eds.), Thriving rough sets (Vol. 708, pp. 237–268). Springer International.
  • Mani, A. (2018a). Algebraic methods for granular rough sets. In A. Mani, I. Düntsch, & G. Cattaneo (Eds.), Algebraic methods in general rough sets (pp. 157–336). Birkhauser Basel.
  • Mani, A. (2018b). Dialectical rough sets, parthood and figures of opposition-I. Transactions on Rough Sets, 21(LNCS 10810), 96–141.
  • Mani, A. (2018c). Representation, duality and beyond. In A. Mani, I. Düntsch, & G. Cattaneo (Eds.), Algebraic methods in general rough sets (pp. 459–552). Birkhauser Basel.
  • Mani, A. (2020a). Comparative approaches to granularity in general rough sets. In R. Bello, D. Miao, R. Falcon, M. Nakata, A. Rosete, & D. Ciucci (Eds.), IJCRS 2020 Rough sets (Vol. 12179, pp. 500–518). Springer.
  • Mani, A. (2020b). Towards student centric rough concept inventories. In R. Bello, D. Miao, R. Falcon, M. Nakata, A. Rosete, & D. Ciucci (Eds.), Rough sets: International joint conference, IJCRS 2020 (Vol. 12179, pp. 251–266). Springer International.
  • Mani, A. (2021). General rough modeling of cluster analysis. In S. Ramanna, C. Cornelis, & D. Ciucci (Eds.), Rough sets: IJCRS-EUSFLAT 2021 (pp. 75–82). Springer Nature.
  • Mani, A. (2022a). Granularity and rational approximation: Rethinking graded rough sets. Transactions on Rough Sets, 23(LNCS 13610), 33–59.
  • Mani, A. (2022b). Mereology for STEAM and education research. In D. Chari, & A. Gupta (Eds.), EpiSTEMe 9 (Vol. 9, pp. 122–129). TIFR.
  • Mani, A., Düntsch, I., & Cattaneo, G. (2018). Algebraic methods in general rough sets. Birkhauser Basel.
  • Mani, A., & Mitra, S. (2022). Granular generalized variable precision rough sets and rational approximations. arxiv 2205.14365. http://arxiv.org/abs/2205.14365.
  • Mckenzie, R., McNulty, G., & Taylor, W. (1987). Algebra, lattices, varieties: Volume 1. AMS.
  • Mundici, D. (1984). Generalization of abstract model theory. Fundamenta Mathematicae, 124, 1–25. https://doi.org/10.4064/fm-124-1-1-25
  • Orłowska, E., & Pawlak, Z. (1984). Logical foundations of knowledge representation – reports of the computing centre (Vol. 537, Tech. Rep.), Polish Academy of Sciences.
  • Pagliani, P. (2018). Three lessons on the topological and algebraic hidden core of rough set theory. In A. Mani, I. Düntsch, & G. Cattaneo (Eds.), Algebraic methods in general rough sets (pp. 337–415). Springer International.
  • Pagliani, P., & Chakraborty, M. (2008). A geometry of approximation: Rough set theory: Logic, algebra and topology of conceptual patterns. Springer.
  • Pawlak, Z. (1991). Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishers.
  • Pawlak, Z., & Skowron, A. (2007). Rough sets and boolean reasoning. Information Sciences, 77, 41–73. https://doi.org/10.1016/j.ins.2006.06.007
  • Polkowski, L. (2004). Rough neural computation model based on rough mereology. In S. K. Pal, L. Polkowski, & A. Skowron (Eds.), Rough neural computation: Techniques for computing with words (pp. 85–108). Springer Verlag.
  • Polkowski, L. (2011). Approximate reasoning by parts. Springer Verlag.
  • Polkowski, L., & Polkowska, S. M. (2008). Reasoning about concepts by rough mereological logics. In G. Wang, T. Li, J. W. Grzymala-Busse, D. Miao, A. Skowron, & Y. Yao (Eds.), RSKT 2008: Rough sets and knowledge technology, LNAI 5009 (pp. 197–204). Springer.
  • Pomykala, J. A. (1993). Approximation, similarity and rough constructions (Report No. CT-93-07, Tech. Rep.), ILLC, Univ of Amsterdam.
  • de Rijke, M. (2000). A note on graded modal logic. Studia Logica, 64(2), 271–283. https://doi.org/10.1023/A:1005245900406
  • Rudeanu, S. (2015). On ideals and filters in posets. Revue Roumaine de Mathématique Pures et Appliquées, 60(2), 155–175.
  • Sands, D., Parker, M., Hedgeland, H., Jordan, S., & Galloway, R. (2018). Using concept inventories to measure understanding. Higher Education Pedagogies, 3(1), 173–182. https://doi.org/10.1080/23752696.2018.1433546
  • Skowron, A., Jankowski, A., & Dutta, S. (2016). Interactive granular computing. Granular Computing, 1(2), 95–113. https://doi.org/10.1007/s41066-015-0002-1
  • Skowron, A., & Stepaniuk, O. (1996). Tolerance approximation spaces. Fundamenta Informaticae, 27, 245–253. https://doi.org/10.3233/FI-1996-272311
  • Ślezak, D., & Wasilewski, P. (2007). Granular sets – Foundations and case study of tolerance spaces. In A. An, J. Stefanowski, S. Ramanna, C. J. Butz, W. Pedrycz, & G. Wang (Eds.), RSFDGrC 2007, LNCS (Vol. 4482, pp. 435–442). Springer.
  • Turksen, I. B. (2005). An ontological and epistemological perspective of fuzzy set theory. Elsevier.
  • Venkataranasimhan, P. (1971). Pseudo-complements in posets. Proceedings of the American Mathematical Society, 28, 9–17. https://doi.org/10.1090/proc/1971-028-01
  • Vieu, L., & Aurnague, M. (2007). Part-of relations, functionality and dependence Amsterdam. In M. Aurnague, NewEditor1 & L. Vieu (Eds.), The categorization of spatial entities in language and cognition (pp. 307–336). Benjamins Publishing Company.
  • Wasilewski, P., & Ślezak, D. (2008). Foundations of rough sets from vagueness perspective. In A. Hassanien, Z. Suraj, D. Slezak, & P. Lingras (Eds.), Rough computing: Theories, technologies and applications (pp. 1–37). IGI, Global.
  • Werner, K. (2020). Enactment and construction of the cognitive niche: Toward an ontology of the mind-world connection. Synthese, 197, 1313–1341. https://doi.org/10.1007/s11229-018-1756-1
  • Yao, Y. Y. (1996). Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 15(4), 291–317. https://doi.org/10.1016/S0888-613X(96)00071-0
  • Yao, Y. Y. (2001). Information granulation and rough set approximation. International Journal of Intelligent Systems, 16, 87–104. https://doi.org/10.1002/1098-111X(200101)16:1¡¿1.0.CO;2-B
  • Yao, Y. Y. (2007). The art of granular computing. In M. Kryszkiewicz, J. F. Peters, H. Rybinski, & A. Skowron (Eds.), RSEISP 2007: Rough sets and intelligent systems paradigms, LNAI 4585 (pp. 101–112). Springer Verlag.
  • Yao, Y. Y. (2015). The two sides of the theory of rough sets. Knowledge-Based Systems, 80, 67–77. https://doi.org/10.1016/j.knosys.2015.01.004
  • Yao, Y. Y. (2016). Rough-set concept analysis: Interpreting Rs-definable concepts based on ideas from formal concept analysis. Information Sciences, 347, 442–462. https://doi.org/10.1016/j.ins.2016.01.091
  • Yao, Y. Y., & Lin, T. Y. (1996). Generalizing rough sets using modal logics. Intelligent Automation and Soft Computing, 2(2), 103–120. https://doi.org/10.1080/10798587.1996.10750660
  • Zadeh, L. A. (1979). Fuzzy sets and information granularity. In N. Gupta (Ed.), Advances in fuzzy set theory and applications (pp. 3–18). North Holland.
  • Zadeh, L. A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90(2), 111–127. https://doi.org/10.1016/S0165-0114(97)00077-8
  • Zhang, X., Mo, Z., Xiong, F., & Cheng, W. (2012). Comparative study of variable precision rough set model and graded rough set model. International Journal of Approximate Reasoning, 53, 104–116. https://doi.org/10.1016/j.ijar.2011.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.