1,133
Views
819
CrossRef citations to date
0
Altmetric
Articles

Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus

&
Pages 338-352 | Received 25 Aug 1997, Accepted 30 Aug 1997, Published online: 24 Mar 2016

Literature cited

  • Abrahams, M. V., 1995. The interactions between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook stickleback. Canadian Journal of Zoology, 73: 2209–2215.
  • Alder, F. R. & C. D. Harvell, 1990. Inducible defences, phenotypic variability and biotic environments. Trends in Ecology and Evolution, 5: 407–410.
  • Appleton, R. D. & A. R. Palmer, 1988. Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proceedings of the National Academy of Science, U.S.A., 85: 4387–4391.
  • Atema, J. & G. D. Burd, 1975. A field study of chemotactic responses of the marine mud snail, Nassarius obsoletus. Journal of Chemical Ecology, 1: 243–251.
  • Atema, J. & D. Stenzler, 1977. Alarm substance of the marine mud snail, Nassarius obsoletus: Biological characterization and possible evolution. Journal of Chemical Ecology, 3: 173–187.
  • Beauchamp, P., 1952a. Un facteur de la variabilité chez les Rotifères du genre Brachionus. Comptes Rendus Hebdomadaires des Séances. Académie des Sciences, 234: 573–575.
  • Beauchamp, P., 1952b. Variation chez les Rotifères du genre Brachionus. Comptes Rendus Hebdomadaires des Séances. Académie des Sciences, 235: 1355–1357.
  • Becker, G. C., 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, Wisconsin.
  • Bertness, M. D. & C. Cunningham, 1981. Crab shell-crushing predation and gastropod architectural defense. Journal of Experimental Marine Biology and Ecology, 50: 213–230.
  • Blum, M. S., 1985. Alarm pheromones. Pages 193-224 in G. A. Kerkut & L. I. Gilbert (ed.). Comparative Insect Physiology, Biochemistry, and Pharmacology, Volume 9. Pergamon Press, Sydney.
  • Bowers, W. S., L. R. Nault, R. E. Webb & S. R. Dutky, 1972. Aphid alarm pheromone: Isolation, identification, synthesis. Science, 177: 1121–1123.
  • Brönmark, C. & J. G. Miner, 1992. Predator-induced phenotypical change in body morphology in crucian carp. Science, 258: 1348–1350.
  • Brönmark, C. & L. B. Pettersson, 1994. Chemical cues from piscivores induce a change in morphology in crucian carp. Oikos, 70: 396–402.
  • Brown, G. E. & J.-G. J. Godin, in press. Anti-predator responses to conspecific and heterospecific skin extracts by threespine sticklebacks: Alarm pheromone revisited. Behaviour, 134-1123–1130.
  • Brown, G. E. & R. J. F. Smith, 1996. Foraging trade-offs in fathead minnows (Pimephales promelas, Osteichthyes, Cyprinidae): Acquired predator recognition in the absence of an alarm response. Ethology, 102: 776–785.
  • Brown, G. E. & R. J. F. Smith, 1997. Conspecific skin extracts elicit anti-predator responses in juvenile rainbow trout (Oncorhynchus mykiss). Canadian Journal of Zoology, 75: 1916–1922.
  • Brown, G. E., D. P. Chivers & R. J. F. Smith, 1995a. Localized defecation by pike: A response to labelling by cyprinid alarm pheromone? Behavioral Ecology and Sociobiology, 36: 105–110.
  • Brown, G. E., D. P. Chivers & R. J. F. Smith, 1995b. Fathead minnows avoid conspecific and heterospecific alarm pheromone in the faeces of northern pike. Journal of Fish Biology, 47: 387–393.
  • Brown, G. E., D. P. Chivers & R. J. F. Smith, 1996. The effects of diet on localized defecation by northern pike (Esox lucius). Journal of Chemical Ecology, 22: 467–475.
  • Bryant, P. B., 1987. A study of the alarm system in selected fishes of northern Mississippi. M.Sc. thesis, University of Mississippi, Mississippi.
  • Caro, T. M., 1986a. The functions of stotting: A review of the hypotheses. Animal Behaviour, 34: 649–662.
  • Caro, T. M., 1986b. The functions of stotting in Thompson’s gazelles: Some tests of the predictions. Animal Behaviour, 34: 663–684.
  • Charnov, E. L. & J. R. Krebs, 1975. The evolution of alarm calls: Altruism or manipulation? American Naturalist, 109: 107–112.
  • Chivers, D. P. & R. J. F. Smith, 1993. The role of olfaction in chemosensory-based predator recognition in the fathead minnow, Pimephales promelas. Journal of Chemical Ecology, 19: 623–633.
  • Chivers, D. P. & R. J. F. Smith, 1994a. Intra- and interspecific avoidance of areas marked with skin extract from brook stickleback (Culaea inconstans) in a natural habitat. Journal of Chemical Ecology, 20: 1517–1524.
  • Chivers, D. P. & R. J. F. Smith, 1994b. The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. Journal of Fish Biology, 44: 273–285.
  • Chivers, D. P. & R. J. F. Smith, 1994c. Fathead minnows, Pimephales promelas, acquire predator recognition when alarm substance is associated with the sight of unfamiliar fish. Animal Behaviour, 48: 597–605.
  • Chivers, D. P. & R. J. F. Smith, 1995a. Fathead minnows, Pimephales promelas, learn to recognize chemical stimuli from high risk habitats by the presence of alarm substance. Behavioral Ecology, 6: 155–158.
  • Chivers, D. P. & R. J. F. Smith, 1995b. Chemical recognition of risky habitats is culturally transmitted among fathead minnows, Pimephales promelas (Osteichthyes, Cyprinidae). Ethology, 99: 286–296.
  • Chivers, D. P., G. E. Brown & R. J. F. Smith, 1995. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology, 99: 234–242.
  • Chivers, D. P., G. E. Brown & R. J. F. Smith, 1996. The evolution of chemical alarm signals: Attracting predators benefits alarm signal senders. American Naturalist, 148: 649–659.
  • Chivers, D. P., E. L. Wildy & A. R. Blaustein, 1997. Eastern longtoed salamander (Ambystoma macrodactylum columbianum) larvae recognize cannibalistic conspecifics. Ethology, 103: 187–197.
  • Chivers, D. P., B. D. Wisenden & R. J. F. Smith, 1995. The role of experience in the response of fathead minnows (Pimephales promelas) to skin extract of Iowa darters (Etheostoma exile). Behaviour, 132: 665–674.
  • Chivers, D. P., B. D. Wisenden & R. J. F. Smith, 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator’s diet. Animal Behaviour, 52: 315–320.
  • Chivers, D. P., J. M. Kiesecker, M. T. Anderson, E. L. Wildy & A. R. Blaustein, 1997a. Avoidance response of a terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues. Journal of Chemical Ecology, 22: 1709–1716.
  • Chivers, D. P., J. M. Kiesecker, E. L. Wildy, M. T. Anderson & A. R. Blaustein, 1997b. Chemical alarm signalling in terrestrial salamanders: Intra- and interspecific responses. Ethology, 103: 599–613.
  • Clark, C. W. & C. D. Harvell, 1992. Inducible defenses and the allocation of resources: A minimal model. American Naturalist, 139: 521–539.
  • Crowl, T. A. & A. P. Covich, 1990. Predator-induced life-history shifts in a freshwater snail. Science, 247: 949–951.
  • Eible-Eibesfeldt, I., 1949. Über das Vorkommen von Schreckstoffen bei Erdkrötenquappen. Experientia, 5: 236.
  • Feminella, J. W. & C. P. Hawkins, 1994. Tailed frog tadpoles differentially alter their feeding behavior in response to nonvisual cues from four predators. Journal of the North American Bethological Society, 13: 310–320.
  • Gandolfi, G., D. Mainardi & A. C. Rossi, 1968. The fright reaction of zebra fish. Atti Societa Italiana di Scienze Naturali, 107: 74–88.
  • García, C., E. Rolán-Alvarez & L. Sánchez, 1992. Alarm reaction and alert state in Gambusia affinis (Pisces, Poeciliidae) in response to chemical stimuli from injured conspecifics. Journal of Ethology, 10: 41–46.
  • Gelowitz, C. M., A. Mathis & R. J. F. Smith, 1993. Chemosensory recognition of northern pike, Esox lucius, by brook stickleback, Culaea inconstans: Population differences and the influence of predator diet. Behaviour, 127: 105–118.
  • Godin, J.-G. J. & S. A. Davis, 1995. Who dares, benefits: Predator approach behaviour in the guppy (Poecilia reticulata) deters predator pursuit. Proceedings of the Royal Society of London (B), 259: 193–200.
  • Göz, H., 1941. Über den Art-und Individualgeruch bei Fischen. Zeitschrift für vergleichende Physiologie, 29: 1–45.
  • Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnology and Oceanography, 26: 201–218.
  • Harvell, C. D., 1984. Predator-induced defense in a marine bryozoan. Science, 224: 1357–1359.
  • Harvell, C. D., 1986. The ecology and evolution of inducible defences in a marine bryozoan: Cues, costs and consequences. American Naturalist, 128: 810–823.
  • Havel, J. E., 1987. Predator-induced defences: A review. Pages 264-278 in W. C. Kerfoot & A. Sih (ed.) Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover.
  • Hazlett, B. A., 1985. Disturbance pheromones in the crayfish Orconectes virilis. Journal of Chemical Ecology, 11: 1695–1711.
  • Hazlett, B. A., 1989. Additional sources of disturbance pheromone affecting the crayfish Orconectes virilis. Journal of Chemical Ecology, 15: 381–385.
  • Hazlett, B. A., 1990a. Disturbance pheromone in the hermit crab Calcinus laevimanus (Randall, 1840). Crustaceana, 58: 314–316.
  • Hazlett, B. A., 1990b. Source and nature of disturbance-chemical system in crayfish. Journal of Chemical Ecology, 16: 2263–2275.
  • Hazlett, B. A., 1994. Alarm response in the crayfish Orconectes virilis and Orconectes propinquus. Journal of Chemical Ecology, 20: 1525–1535.
  • Heczko, E. J. & B. H. Seghers, 1981. Effects of alarm substance on schooling in the common shiner (Notropis cornutus, Cyprinidae). Environmental Biology of Fishes, 6: 25–29.
  • Hershey, A. E. & S. I. Dodson, 1987. Predator avoidance by Cricotopus: Cyclomorphosis and the importance of being big and hairy. Ecology, 68: 913–920.
  • Hews, D. K., 1988. Alarm response in larval western toads, Bufo boreas: Release of larval chemical by a natural predator and its effect on predator capture efficiency. Animal Behaviour, 36: 125–133.
  • Hews, D. K. & A. R. Blaustein, 1985. An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles. Behavioral and Neural Biology, 43: 47–57.
  • Högstedt, G., 1983. Adaptation unto death: Function of fear screams. American Naturalist, 121: 562–570.
  • Hokit, D. G. & A. R. Blaustein, 1996. Predator avoidance and alarm response behaviour in kin-discriminating tadpoles. Ethology, 101: 280–290.
  • Houtman, R. & L. M. Dill, 1994. The influence of substrate color on the alarm response of tidepool sculpins (Oligocottus macu-losus; Pisces, Cottidae). Ethology, 96: 147–154.
  • Howe, N. R., 1976. Behavior of sea anemones evoked by the alarm pheromone anthopleurine. Journal of Comparative Physiology, 107: 67–76.
  • Howe, N. R. & L. G. Harris, 1978. Transfer of the sea anemone pheromone, anthopleurine, by the nudibranch Aeolidia papillosa. Journal of Chemical Ecology, 4: 551–561.
  • Howe, N. R., & Y. M. Sheikh, 1975. Anthopleurine: A sea anemone alarm pheromone. Science, 189: 386–388.
  • Hrbacek, J., 1950. On the flight reaction of tadpoles of the common toad caused by chemical substances. Experientia, 6: 100–101.
  • Hugie, D. M., P. L. Thuringer & R. J. F. Smith, 1991. The response of the tidepool sculpin, Oligocottus maculosus, to chemical stimuli from injured conspecifics, alarm signalling in the Cottidae (Pisces). Ethology, 89: 322–334.
  • Jaiswal, S. K. & S. Waghray. 1990. Quantification of defence reactions of cichlid fish, Oreochromis mossambicus (Peters) Trewavas, in response to warning chemicals. Indian Journal of Animal Science, 60: 1137–1145.
  • Jakobsen, J. & G. H. Johnsen, 1989. The influence of alarm substance on feeding in zebra danio fish (Brachydanio rerio). Ethology, 82: 325–327.
  • Johansson, F. & L. Samuelsson, 1994. Fish induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia, 100: 74–79.
  • Kats, L. B. & L. M. Dill, 1998. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience, 5: 361–394.
  • Kats, J. N. & D. Rittschof, 1993. Alarm/investigation responses of hermit crabs as related to shell fit and crab size. Marine Behaviour and Physiology, 22: 171–182.
  • Keefe, M., 1992. Chemically mediated avoidance behaviour in wild brook trout, Salvelinus fontinalis: The response to familiar and unfamiliar predaceous fishes and the influences of fish diet. Canadian Journal of Zoology, 70: 288–292.
  • Keenleyside, M. H. A., 1979. Diversity and Adaptation in Fish Behaviour. Springer-Verlag, Berlin.
  • Kempendorff, W., 1942. Über das Fluchtphänomen und die Chermorezeption von Helisoma (Taphius) nigricans Spix. Archiv für Molluskenkunde, 74: 1–27.
  • Klump, G. M. & M. D. Shalter, 1984. Acoustic behaviour of birds and mammals in the predator context. I. Factors affecting the structure of alarm signals. II. The functional significance and evolution of alarm signals. Zeitschrift für Tierpsychologie, 66: 189–226.
  • Kuhlman, H. W. & K. Heckmann, 1985. Interspecific morphogens regulating prey-predator relationships in protozoans. Science, 227: 1347–1349.
  • Kulzer, E., 1954. Untersuchungen über die Schreckreaktion bei Erdkrötenkaulquappen (Bufo bufo L.) Zeitschrift für Tierpsychologie, 36: 443–463.
  • Kusch, J., 1993. Behavioural and morphological changes in ciliates induced by the predator Amoeba proteus. Oecologia, 96: 354–359.
  • Lawler, G. E., 1965. The food of the pike, Esox lucius, in Hemming Lake, Manitoba. Journal of the Fisheries Research Board of Canada, 22: 1357–1377.
  • Lawrence, B. J. & R. J. F. Smith, 1989. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. Journal of Chemical Ecology, 15: 209–219.
  • Lawrence, J. M., 1991. A chemical alarm response in Pycnopodia helianthoides (Echinodermata: Asteroidea). Marine Behaviour and Physiology, 19: 39–44.
  • Lima, S. L. & L. M. Dill, 1990. Behavioral decisions made under the risk of predation: A review and prospectus. Canadian Journal of Zoology, 68: 619–640.
  • Magurran, A. E., 1989. Acquired recognition of predator odour in the European minnow (Phoxinus phoxinus). Ethology, 82: 216–223.
  • Magurran, A. E., 1990. The adaptive significance of schooling as an anti-predator defence in fish. Annales Zoologici Fennici, 27: 51–66.
  • Magurran, A. E., P. W. Irving & P. A. Henderson, 1996. Is there a fish alarm pheromone? A wild study and critique. Proceedings of the Royal Society of London, 263: 1551–1556.
  • Mann, K. H., J. L. C. Wright, B. E. Welsford & E. Hatfield, 1984. Responses of the sea urchin Strongylocentrotus droebachiensis (O. F. Müller) to water-borne stimuli from potential predators and potential food algae. Journal of Experimental Marine Biology and Ecology, 79: 233–244.
  • Marvin, G. A. & V. H. Hutchison, 1995. Avoidance response by adult newts (Cynops pyrrhogaster and Notophthalmus viridescens) to chemical alarm cues. Behaviour, 132: 95–105.
  • Mathis, A. & W. W. Hoback, 1997. The influence of chemical stimuli from predators on precopulatory pairing by the amphipod, Gammarus pseudolimnaeus. Ethology, 103: 33–40.
  • Mathis, A. & R. J. F. Smith, 1992. Avoidance of areas marked with a chemical alarm substance by fathead minnows (Pimephales promelas) in a natural habitat. Canadian Journal of Zoology, 70: 1473–1476.
  • Mathis, A. & R. J. F. Smith, 1993a. Intraspecific and cross-superorder responses to chemical alarm signals by brook stickleback. Ecology, 74: 2395–2404.
  • Mathis, A. & R. J. F. Smith, 1993b. Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius). Behavioral Ecology, 4: 260–265.
  • Mathis, A. & R. J. F. Smith, 1993c. Fathead minnows (Pimephales promelas) learn to recognize pike (Esox lucius) as predators on the basis of chemical stimuli from minnows in the pike’s diet. Animal Behaviour, 46: 645–656.
  • Mathis, A. & R. J. F. Smith, 1993d. Chemical labelling of northern pike, Esox lucius, by the alarm pheromone of fathead minnows, Pimephales promelas. Journal of Chemical Ecology, 19: 1967–1979.
  • Mathis, A., D. P. Chivers & R. J. F. Smith, 1993. Population differences in responses of fathead minnows (Pimephales promelas) to visual and chemical stimuli from predators. Ethology, 93: 31–40.
  • Mathis, A., D. P. Chivers & R. J. F. Smith, 1995. Chemical alarm signals: Predator deterrents or predator attractants? American Naturalist, 146: 994–1005.
  • Mathis, A., D. P. Chivers & R. J. F. Smith, 1996. Cultural transmission of predator recognition in fishes: Intraspecific and interspecific learning. Animal Behaviour, 51: 185–201.
  • McCollum, S. A. & J. Van Buskirk, 1996. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution, 50: 583–593.
  • McKillup, S. C. & R. V. McKillup, 1992. Inhibition of feeding in response to crushed conspecifics by the pebble crab Philyra laevis (Bell). Journal of Experimental Marine Biology and Ecology, 161: 33–43.
  • Nelson, J. S., 1969. Geographic variation in the brook stickleback, Culaea inconstans, and notes on nomenclature and distribution. Journal of the Fisheries Research Board of Canada, 26: 2431–2447.
  • Parker, D. A. & M. J. Schulman, 1986. Avoiding predation: Alarm responses of Caribbean sea urchins to simulated predation on conspecific and heterospecific sea urchins. Marine Biology, 93: 201–208.
  • Petranka, J. W., 1989. Response of toad tadpoles to conflicting chemical stimuli: Predator avoidance versus “optimal” foraging. Herpetologica, 45: 283–292.
  • Pfeiffer, W., 1960. Über die Schreckreaktion bei Fischen und die Herkunft des Schreckstoffes. Zeitschrift für vergleichende Physiologie, 43: 578–614.
  • Pfeiffer, W., 1966. Die Verbreitung der Schreckreaktion bei Kaulquappen und dei Herkunft des Schreckstoffes. Zeitschrift für vergleichende Physiologie, 52: 79–98.
  • Pfeiffer, W., 1977. The distribution of fright reaction and alarm substance cells in fishes. Copeia, 1977: 653–665.
  • Pfeiffer, W., G. Riegelbauer, G. Meir & B. Scheibler, 1985. Effects of hypoxanthine-3(N)-oxide and hypoxanthine-1(N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response. Journal of Chemical Ecology, 11: 507–524.
  • Reed, J. R., 1969. Alarm substances and fright reaction in some fishes of the southeastern United States. Transactions of the American Fisheries Society, 98: 664–668.
  • Reist, J. D., 1980a. Selective predation upon pelvic phenotypes of brook stickleback, Culaea inconstans, by northern pike, Esox lucius. Canadian Journal of Zoology, 58: 1245–1252.
  • Reist, J. D., 1980b. Predation upon pelvic phenotypes of brook stickleback, Culaea inconstans, by selected invertebrates. Canadian Journal of Zoology, 58: 1253–1258.
  • Rittschof, D., D. W. Tsai, P. G. Massey, L. Blanco, G. L. Kueber, Jr. & R. J. Haas Jr., 1992. Chemical mediation of behavior in hermit crabs: Alarm and aggregation cues. Journal of Chemical Ecology, 18: 959–984.
  • Rottman, S. J. & C. T. Snowdon, 1972. Demonstration and analysis of an alarm pheromone in mice. Journal of Comparative Physiology and Psychology, 81: 483–490.
  • Schutz, F., 1956. Vergleichende Untersuchungen über die Schreckreaktion bei Fischen und deren Verbreitung. Zeitschrift für vergleichende Physiologie, 38: 84–135.
  • Scrimgeour, G. J., J. M. Culp & K. J. Cash, 1994. Anti-predator responses of mayfly larvae to conspecific and predator stimuli. Journal of the North American Benthological Society, 13: 299–309.
  • Sherman, P. W., 1980. The meaning of nepotism. American Naturalist, 116: 604–606.
  • Shields, M. W., 1980. Ground squirrel alarm calls: Nepotism or parental care? American Naturalist, 116: 599–603.
  • Sih, A., 1986. Antipredator responses and the perception of danger by mosquito larvae. Ecology, 67: 434–441.
  • Sih, A. & R. D. Moore, 1993. Delayed hatching of salamander eggs in response to enhanced larval predation risk. American Naturalist, 142: 947–960.
  • Sih, A., J. W. Petranka & L. B. Kats, 1988. The dynamics of prey refuge use: A model and tests with sunfish and salamander larvae. American Naturalist, 132: 463–483.
  • Smith, R. J. F., 1973. Testosterone eliminates alarm substance in male fathead minnows. Canadian Journal of Zoology, 51: 875–876.
  • Smith, R. J. F., 1979. Alarm reaction of Iowa and johnny darters (Etheostoma, Percidae, Pisces) to chemicals from injured conspecifics. Canadian Journal of Zoology, 57: 1278–1282.
  • Smith, R. J. F., 1981. Effects of food deprivation on the reaction of Iowa darters (Etheostoma exile) to skin extract. Canadian Journal of Zoology, 59: 558–560.
  • Smith, R. J. F., 1982. Reaction of Percina nigrofasciata, Ammocrypta beani, and Etheostoma swaini (Percidae, Pisces) to conspecific and intergeneric skin extracts. Canadian Journal of Zoology, 60: 1067–1072.
  • Smith, R. J. F., 1989. The response of Asterropteryx semipunctatus and Gnatholepis anjerensis (Pisces, Gobiidae) to chemical stimuli from injured conspecifics, an alarm response in gobies. Ethology, 81: 279–290.
  • Smith, R. J. F., 1992. Alarm signals in fishes. Reviews in Fish Biology and Fisheries, 2: 33–63.
  • Smith, R. J. F., 1997. Does one result trump all others? A response to Magurran, Irving and Henderson. Proceedings of the Royal Society of London, 264: 445–450.
  • Smith, R. J. F. & B. J. Lawrence, 1991. The response of a bumblebee goby, Brachygobius sabanus, to chemical stimuli from injured conspecifics. Environmental Biology of Fishes, 34: 103–108.
  • Smith, R. J. F. & A. D. Lemly, 1986. Survival of fathead minnows after injury by predators and its possible role in the evolution of alarm signals. Environmental Biology of Fishes, 15: 147–149.
  • Smith, R. J. F., B. J. Lawrence & M. J. Smith, 1991. Cross-reactions to skin extract between two gobies, Asterropteryx semipunctatus and Brachygobius sabanus. Journal of Chemical Ecology, 17: 2253–2259.
  • Smythe, N., 1977. The function of mammalian alarm advertising, social signals or pursuit invitation? American Naturalist, 111: 191–194.
  • Snyder, N. R. F., 1967. An alarm reaction of aquatic gastropods to intraspecific extract. Cornell University, Agricultural Experiment Station, New York State College of Agriculture, Ithaca, New York, Memoir 403: 1–122.
  • Snyder, N. F. R. & H. A. Snyder, 1970. Alarm response of Diadema antillarum. Science, 168: 276–278.
  • Snyder, N. F. R. & H. A. Snyder, 1971. Defences of the Florida apple snail Pomacea paludosa. Behaviour, 40: 175–215.
  • Stabell, O. B. & M. S. Lwin, 1997. Predator-induced phenotypic changes in crucian carp are caused by chemical signals from conspecifics. Environmental Biology of Fishes, 49: 145–149.
  • Staton, M. A., 1978. “Distress calls” of crocodillians: Whom do they benefit? American Naturalist, 112: 327–332.
  • Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: Induction by cyclopoid copepods and Asplanchna. Freshwater Biology, 14: 639–647.
  • Stenzler, D. & J. Atema, 1977. Alarm response of the marine mud snail, Nassarius obsoletus: Specificity and behavioral priority. Journal of Chemical Ecology, 3: 159–171.
  • Suboski, M. D., S. Bain, A. E. Carty, L. M. McQuoid, M. I. Seelen & H. Seifert, 1990. Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). Journal of Comparative Psychology, 104: 101–112.
  • Teerling, C. R., H. D. Pierce Jr., J. H. Borden & D. R. Gillespie, 1993. Identification and bioactivity of alarm pheromone in the western flower thrips, Frankliniella occidentalis. Journal of Chemical Ecology, 19: 681–697.
  • Tilson, R. L. & P. M. Norton. 1981. Alarm duetting and pursuit deterrence in an African antelope. American Naturalist, 118: 455–462.
  • Trivers, R. L., 1971. The evolution of reciprocal altruism. Quarterly Review of Biology, 46: 35–57.
  • Verheijen, F. J., 1956. Transmission of a fright reaction amongst a school of fish and the underlying sensory mechanisms. Experientia, 12: 202–204.
  • Vermeij, G. J., 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature, 299: 349–350.
  • von Frisch, K., 1938. Zur Psychologie des Fisch-Schwarmes. Naturwissenschaften, 26: 601–606.
  • von Frisch, K., 1941. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Zeitschrift für vergleichende Physiologie, 29: 26–145.
  • Waldman, B., 1982. Quantitative and developmental analysis of the alarm reaction in the zebra danio, Brachydanio rerio. Copeia, 1982: 1–9.
  • Williams, D. D. & K. A. Moore, 1985. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: Laboratory analysis. Oikos, 44: 280–286.
  • Wilson, D. J. & H. Lefcort, 1993. The effects of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles. Animal Behaviour 46: 1017–1019.
  • Wisenden, B. D. & R. C. Sargent, 1997. Antipredator behaviour and suppressed aggression by convict cichlids in response to injury-released chemical cues of conspecifics but not those of an allopatric heterospecifics. Ethology: 103: 283–291.
  • Wisenden, B. D., D. P. Chivers & R. J. F. Smith, 1994. Risk-sensitive habitat use by brook stickleback (Culaea inconstans) in areas associated with minnow alarm pheromone. Journal of Chemical Ecology, 20: 2975–2983.
  • Wisenden, B. D., D. P. Chivers & R. J. F. Smith, 1995. Early warning in the predation sequence: a disturbance pheromone in Iowa darters (Etheostoma exile). Journal of Chemical Ecology, 21: 1469–1480.
  • Wisenden, B. D., D. P. Chivers & R. J. F. Smith, 1997. Learned recognition of predation risk by Enallagma damselfly larvae (Odonata, Zygoptera) on the basis of chemical cues. Journal of Chemical Ecology, 23: 137–151.
  • Wisenden, B. D., D. P. Chivers, G. E. Brown & R. J. F. Smith, 1995. The role of experience in risk assessment: Avoidance of areas chemically labelled with fathead minnow alarm pheromone by conspecifics and heterospecifics. Écoscience, 2: 116–122.
  • Woody, D. R., 1996. The role of alarm pheromones in predation avoidance by adult central newts, Notophthalmus viridescens. M.Sc. Thesis, Southwest Missouri State University, Springfield, Missouri.
  • Woody, D. R. & A. Mathis, 1997. Avoidance of areas labeled with chemical stimuli from damaged conspecifics by adult newts, Notophthalmus viridescens, in a natural habitat. Journal of Herpetology, 31: 316–318.
  • Woodland, D. J., Z. Jaafar & M.-L. Knight, 1980. The “pursuit deterrent” function of alarm signals. American Naturalist, 115: 748–753.
  • Wudkevich, K., B. D. Wisenden, D. P. Chivers & R. J. F. Smith, 1997. Reactions of Gammarus lacustris (Amphipoda) to chemical stimuli from natural predators and injured conspecifics. Journal of Chemical Ecology, 23: 1164–1173.
  • Yamada, S. B., S. A. Navarrete & C. Needham, 1998. Predation induced changes in behavior and growth rate in three populations of the intertidal snail, Littorina sitkana (Philippi). Journal of Experimental Marine Biology and Ecology, 220: 213–220.
  • Yoshioka, P. M., 1982. Predator-induced polymorphism in the bryozoan Membranipora membranacea (L.). Journal of Experimental Marine Biology and Ecology, 61: 233–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.