1,319
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Daytime-only measurements underestimate CH₄ emissions from a restored bog

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 259-270 | Received 21 Nov 2017, Accepted 24 Feb 2018, Published online: 20 May 2018

References

  • Andersen R, Farrell C, Graf M, Muller F, Calvar E, Frankard P, Caporn S, Anderson P. 2017. An overview of the progress and challenges of peatland restoration in Western Europe. Restor Ecol. 25:271–282.
  • Bäckstrand K, Crill PM, Mastepanov M, Christensen TR, Bastviken D. 2008. Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. J Geophys Res. 113:G03026.
  • Baird A, Holden J, Chapman P. 2009. A literature review of evidence on emissions of methane in peatlands. Defra Project SP0574, University of Leeds.
  • Beyer C, Höper H. 2015. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany. Biogeosciences. 12:2101–2117.
  • Bubier J, Moore T, Savage K, Crill P. 2005. A comparison of methane flux in a boreal landscape between a dry and a wet year. Glob Biogeochem Cycl. 19. doi:10.1029/2004GB002351
  • Campeau S, Rochefort L. 1996. Sphagnum regeneration on bare peat surfaces: field and greenhouse experiments. J Appl Ecol. 33:599–608.
  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440:165–173.
  • Denmead O. 2008. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil. 309:5–24.
  • Dise NB, Gorham E, Verry ES. 1993. Environmental factors controlling methane emissions from peatlands in northern Minnesota. J Geophys Res. 98:10583–10594.
  • Dixon SD, Worrall F, Rowson JG, Evans MG. 2015. Calluna vulgaris canopy height and blanket peat CO2 flux: implications for management. Ecol Eng. 75:497–505.
  • Dunfield P, Dumont R, Moore TR. 1993. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem. 25:321–326.
  • Fan S, Wofsy SC, Bakwin P, Jacob DJ, Anderson S, Kebabian P, McManus J, Kolb C, Fitzjarrald D. 1992. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J Geophys Res. 97:D15.
  • Francez A-J, Gogo S, Josselin N. 2000. Distribution of potential CO2 and CH4 productions, denitrification and microbial biomass C and N in the profile of a restored peatland in Brittany (France). Eur J Soil Biol. 36:161–168.
  • Görres C-M, Kutzbach L, Elsgaard L. 2014. Comparative modeling of annual CO2 flux of temperate peat soils under permanent grassland management. Agric Ecosyst Environ. 186:64–76.
  • Greenup A, Bradford M, McNamara N, Ineson P, Lee J. 2000. The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil. 227:265–272.
  • Haapalehto TO, Vasander H, Jauhiainen S, Tahvanainen T, Kotiaho JS. 2011. The effects of peatland restoration on water‐table depth, elemental concentrations, and vegetation: 10 years of changes. Restor Ecol. 19:587–598.
  • Hargreaves K, Fowler D. 1998. Quantifying the effects of water table and soil temperature on the emission of methane from peat wetland at the field scale. Atmos Environ. 32:3275–3282.
  • Herbst M, Friborg T, Schelde K, Jensen R, Ringgaard R, Vasquez V, Thomsen AG, Soegaard H. 2013. Climate and site management as driving factors for the atmospheric greenhouse gas exchange of a restored wetland. Biogeosciences. 10:39–52.
  • Howie S, Whitfield P, Hebda R, Munson T, Dakin R, Jeglum J. 2009. Water table and vegetation response to ditch blocking: restoration of a raised bog in southwestern British Columbia. Can Water Resour J. 34:381–392.
  • IPCC. 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge (UK): Cambridge University Press.
  • IPCC. 2014. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler T, editors. Switzerland: IPCC. http://www.ipcc-nggip.iges.or.jp/public/wetlands/
  • Karofeld E, Müür M, Vellak K. 2016. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ Sci Pollut Res. 23:13706–13717.
  • King J, Reeburgh W. 2002. A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem. 34:173–180.
  • King J, Reeburgh W, Thieler K, Kling G, Loya W, Johnson L, Nadelhoffer K. 2002. Pulse‐labeling studies of carbon cycling in Arctic tundra ecosystems: the contribution of photosynthates to methane emission. Glob Biogeochem Cycl. 16:10-1–10-8.
  • Komulainen V-M, Nykänen H, Martikainen PJ, Laine J. 1998. Short-term effect of restoration on vegetation change and methane emissions from peatlands drained for forestry in southern Finland. Can J For Res. 28:402–411.
  • Komulainen V-M, Tuittila E-S, Vasander H, Laine J. 1999. Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. J Appl Ecol. 36:634–648.
  • Kowalska N, Chojnicki B, Rinne J, Haapanala S, Siedlecki P, Urbaniak M, Juszczak R, Olejnik J. 2013. Measurements of methane emission from a temperate wetland by the eddy covariance method. Int Agrophys. 27:283–290.
  • Kozlov S, Lundin L, Avetov N. 2016. Revegetation dynamics after 15 years of rewetting in two extracted peatlands in Sweden. Mires Peat. 18:1–17.
  • Lai D, Roulet N, Humphreys E, Moore T, Dalva M. 2012. The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosciences. 9:3305–3322.
  • Lai DY, Roulet NT, Moore TR. 2014. The spatial and temporal relationships between CO2 and CH4 exchange in a temperate ombrotrophic bog. Atmos Environ. 89:249–259.
  • Lai DYF. 2009. Methane dynamics in northern peatlands: a review. Pedosphere. 19:409–421.
  • Lavoie C, Grosvernier P, Girard M, Marcoux K. 2003. Spontaneous revegetation of mined peatlands: an useful restoration tool? Wetlands Ecol Manage. 11:97–107.
  • Lavoie C, Marcoux K, Saint-Louis A, Price JS. 2005. The dynamics of a cotton-grass (Eriophorum vaginatum L.) cover expansion in a vacuum-mined peatland, southern Québec, Canada. Wetlands. 25:64–75.
  • Lavoie C, Rochefort L. 1996. The natural revegetation of a harvested peatland in southern Québec: a spatial and dendroecological analysis. Écoscience. 3:101–111.
  • Le Mer J, Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 37:25–50.
  • Lindsay R. 2010. Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. RSPB Scotland, Edinburgh.
  • Marinier M, Glatzel S, Moore TR. 2004. The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Écoscience. 11:141–149.
  • Mikkelä C, Sundh I, Svensson BH, Nilsson M. 1995. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry. 28:93–114.
  • Pelletier L, Moore T, Roulet N, Garneau M, Beaulieu‐Audy V. 2007. Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. J Geophys Res. 112. doi:10.1029/2006JG000216
  • Pfadenhauer J, Klötzli F. 1996. Restoration experiments in middle European wet terrestrial ecosystems: an overview. Vegetatio. 126:101–115.
  • Poulin M, Rochefort L, Quinty F, Lavoie C. 2005. Spontaneous revegetation of mined peatlands in eastern Canada. Can J Bot. 83:539–557.
  • Samaritani E, Siegenthaler A, Yli-Petäys M, Buttler A, Christin P-A, Mitchell EA. 2011. Seasonal net ecosystem carbon exchange of a regenerating cutaway bog: how long does it take to restore the C-sequestration function? Restor Ecol. 19:480–489.
  • Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M. 2014. Methanogenesis and methanotrophy in soil: a review. Pedosphere. 24:291–307.
  • Shannon RD, White JR, Lawson JE, Gilmour BS. 1996. Methane efflux from emergent vegetation in peatlands. J Ecol. 84:239–246.
  • Sliva J, Pfadenhauer J. 1999. Restoration of cut-over raised bogs in southern Germany: a comparison of methods. Appl Veget Sci. 2:137–148.
  • Stamp I. 2011. Methane emissions variability from a Welsh patterned raised bog. London: School of Geography, Queen Mary, University of London.
  • Ström L, Ekberg A, Mastepanov M, Røjle Christensen T. 2003. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol. 9:1185–1192.
  • Thomas KL, Benstead J, Davies KL, Lloyd D. 1996. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol Biochem. 28:17–23.
  • Tuittila E-S, Komulainen V-M, Vasander H, Laine J. 1999. Restored cut-away peatland as a sink for atmospheric CO2. Oecologia. 120:563–574.
  • Tuittila E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J. 2000a. Methane dynamics of a restored cut‐away peatland. Glob Chang Biol. 6:569–581.
  • Tuittila E-S, Vasander H, Laine J. 2000b. Impact of rewetting on the vegetation of a cut‐away peatland. Appl Veget Sci. 3:205–212.
  • Tuittila E-S, Vasander H, Laine J. 2004. Sensitivity of C sequestration in reintroduced sphagnum to water‐level variation in a cutaway peatland. Restor Ecol. 12:483–493.
  • Van Den Pol-Van Dasselaar A, Van Beusichem ML, Oenema O. 1999. Methane emissions from wet grasslands on peat soil in a nature preserve. Biogeochemistry. 44:205–220.
  • Waddington J, Roulet N, Swanson R. 1996. Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res. 101:22775–22785.
  • Whalen SC, Reeburgh WS. 1988. A methane flux time series for tundra environments. Glob Biogeochem Cycl. 2:399–409.
  • Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E-S. 2009. Rewetting of cutaway peatlands: are we re-creating hotspots of methane emissions? Restor Ecol. 17:796–806.
  • Wilson D, Blain D, Couwenberg J, Evans C, Murdiyarso D, Page S, Renou-Wilson F, Rieley J, Sirin A, Strack M. 2016. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat. 17:1–28.
  • Wilson D, Dixon S, Artz R, Smith T, Evans C, Owen H, Archer E, Renou-Wilson F. 2015. Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom. Biogeosciences. 12:5291–5308.
  • Wilson D, Farrell C, Mueller C, Hepp S, Renou-Wilson F. 2013. Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation. Mires Peat. 11:1–22.
  • Wilson D, Tuittila E-S, Alm J, Laine J, Farrell EP, Byrne KA. 2007. Carbon dioxide dynamics of a restored maritime peatland. Ecoscience. 14:71–80.
  • Worrall F, Chapman P, Holden J, Evans C, Artz R, Smith P, Grayson R. 2011. A review of current evidence on carbon fluxes and greenhouse gas emissions from UK peatlands. JNCC Report No. 442. Peterborough.
  • Yavitt J, Lang G, Sexstone A. 1990. Methane fluxes in wetland and forest soils, beaver ponds, and low‐order streams of a temperate forest ecosystem. J Geophys Res. 95:22463–22474.