178
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting juvenile-to-adult survival in Chinook salmon using non-lethal scale-derived growth and regeneration indices

ORCID Icon, & ORCID Icon
Received 27 Sep 2023, Accepted 11 May 2024, Published online: 11 Jul 2024

References

  • Achord S, Zabel RW, Sandford BP. 2007. Migration timing, growth, and estimated parr-to-smolt survival rates of wild Snake River spring–summer Chinook salmon from the Salmon River basin, Idaho, to the lower Snake River. T Am Fish Soc. 136(1):142–154. doi: 10.1577/T05-308.1.
  • Barton BA. 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol. 42(3):517–525. doi: 10.1093/icb/42.3.517.
  • Beacham TD, Araujo HA, Tucker S, Trudel M, Fujiwara M. 2018. Validity of inferring size-selective mortality and a critical size limit in Pacific salmon from scale circulus spacing. PLoS One. 13(6):e0199418. doi: 10.1371/journal.pone.0199418.
  • Beakes MP, Sharron S, Charish R, Moore JW, Satterthwaite WH, Sturm E, Wells BK, Sogard SM, Mangel M. 2014. Using scale characteristics and water temperature to reconstruct growth rates of juvenile steelhead Oncorhynchus mykiss. J Fish Biol. 84(1):58–72. doi: 10.1111/jfb.12254.
  • Beckman BR, Dickhoff WW, Zaugg WS, Sharpe C, Hirtzel S, Schrock R, Larsen DA, Ewing RD, Palmisano A, Schreck CB, et al. 1999. Growth, smoltification, and smolt-to-adult return of spring chinook salmon from hatcheries on the Deschutes River, Oregon. T Am Fish Soc. 128(6):1125–1150. doi: 10.1577/1548-8659(1999)128<1125:GSASTA>2.0.CO;2.
  • Biro PA, Post JR, Abrahams MV. 2005. Ontogeny of energy allocation reveals selective pressure promoting risk-taking behaviour in young fish cohorts. Proc R Soc B. 272(1571):1443–1448. doi: 10.1098/rspb.2005.3096.
  • Budy P, Thiede GP, Bouwes N, Petrosky CE, Schaller HA. 2002. Evidence linking delayed mortality of Snake River salmon to their earlier hydrosystem experience. T Am Fish Soc. 22(1):35–51. doi: 10.1577/1548-8675(2002)022<0035:ELDMOS>2.0.CO;2.
  • Burke BJ, Peterson WT, Beckman BR, Morgan C, Daly EA, Litz M, MacKenzie BR. 2013. Multivariate models of adult Pacific salmon returns. PLOS ONE. 8(1):e54134. doi: 10.1371/journal.pone.0054134.
  • Bürkner P-C. 2017. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 80(1):1–28. doi: 10.18637/jss.v080.i01.
  • Bürkner P-C, Gabry J, Wever S, Johnson A, Modrak M, Badr HS, Weber F, Ben-Shachar MS, Rabel H, Mills SC, et al. 2023. Bayesian regression models using ‘Stan’, brms package, version 2.20.4, date published 2023-09-25.
  • Campbell M. 2012. Obtaining scales from juvenile steelhead and Chinook salmon v1.0. Method ID 1360. https://www.monitoringresources.org/Document/Method/Details/1360.
  • Claiborne AM, Fisher JP, Hayes SA, Emmett RL. 2011. Size at release, size-selective mortality, and age of maturity of Willamette River hatchery yearling Chinook salmon. T Am Fish Soc. 140(4):1135–1144. doi: 10.1080/00028487.2011.607050.
  • Denny SK, Fanning LM. 2016. A Mi’kmaw perspective on advancing salmon governance in Nova Scotia, Canada: setting the stage for collaborative co-existence. Int Indigenous Pol J. 7:4. doi: 10.18584/iipj.2016.7.3.4.
  • Enberg K, Jorgensen C, Dunlop ES, Varpe O, Boukal DS, Baulier L, Eliassen S, Heino M. 2012. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar Ecol-Evol Persp. 33(1):1–25. doi: 10.1111/j.1439-0485.2011.00460.x.
  • Faulkner JR, Bellerud BL, Widener DL, Zabel RW. 2019. Associations among fish length, dam passage history, and survival to adulthood in two at-risk species of Pacific salmon. T Am Fish Soc. 148(6):1069–1087. doi: 10.1002/tafs.10200.
  • Fisher JP, Pearcy WG. 1990. Spacing of scale circuli versus growth rate in young Coho salmon. Fish Bull. 88:637–643.
  • Fisher JP, Pearcy WG. 2005. Seasonal changes in growth of Coho salmon (Oncorhynchus kisutch) off Oregon and Washington and concurrent changes in the spacing of scale circuli. Fish Bull. 103:34–51.
  • Ford MJ, editor. 2022. Biological viability assessment update for pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. In: U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-171. doi: 10.25923/kq2n-ke70.
  • Fukuwaka MA. 1998. Scale and otolith patterns prove growth history of Pacific salmon. N Pac Anadromous Fish Commission Bull. 1:190–198.
  • Gamble MM, Connelly KA, Gardner JR, Chamberlin JW, Warheit KI, Beauchamp DA. 2018. Size, growth, and size-selective mortality of subyearling Chinook salmon during early marine residence in Puget Sound. T Am Fish Soc. 147(2):370–389. doi: 10.1002/tafs.10032.
  • Gao SY, Sun P, Zhao XY, Chang K, Chen WJ. 2023. Waterborne copper exposure decreases fish growth and survival by promoting gills and liver impairments in largemouth bass (Micropterus salmoides). Environ Sci Pollut Res. 30(56):119204–119216. doi: 10.1007/s11356-023-30755-7.
  • Garrido S, Ben-Hamadou R, Santos AMP, Ferreira S, Teodósio MA, Cotano U, Irigoien X, Peck MA, Saiz E, Ré P. 2015. Born small, die young: Intrinsic, size-selective mortality in marine larval fish. Sci Rep. 5(1):17065. doi: 10.1038/srep17065.
  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. 2014. Bayesian Data Analysis. 3rd ed. Boca Raton, Florida: Chapman & Hall Book, CRC Press.
  • Ghods S, Waddell S, Weller E, Renteria C, Jiang HY, Janak JM, Mao SS, Linley TJ, Arola D. 2020. On the regeneration of fish scales: structure and mechanical behavior. J Exp Biol. 223:jeb211144. doi: 10.1242/jeb.211144.
  • Goertler PAL, Scheuerell MD, Simenstad CA, Bottom DL, Castonguay M. 2016. Estimating common growth patterns in juvenile Chinook salmon (Oncorhynchus tshawytscha) from diverse genetic stocks and a large spatial extent. PLOS ONE. 11(10):e0162121. doi: 10.1371/journal.pone.0162121.
  • Gosselin JL, Anderson JJ, Sanderson BL, Middleton MA, Sandford BP, Weitkamp LA. 2022. Assessing seasonal and biological indices of juvenile Chinook salmon for freshwater decision triggers that increase ocean survival. Freshw Sci. 41(2):253–269. doi: 10.1086/720007.
  • Gosselin JL, Buhle ER, Van Holmes C, Beer WN, Iltis S, Anderson JJ. 2021. Role of carryover effects in conservation of wild Pacific salmon migrating regulated rivers. Ecosphere. 12(7):e03618. doi: 10.1002/ecs2.3618.
  • Gregory SD, Ibbotson AT, Riley WD, Nevoux N, Lauridsen RB, Russell IC, Britton JR, Gillingham PK, Simmons OM, Rivot E, et al. 2019. Atlantic salmon return rate increases with smolt length. ICES J Mar Sci. 76(6):1702–1712. doi: 10.1093/icesjms/fsz066.
  • Hernandez K, Copeland T, Wright K. 2014. Quantitative assessment of scale resorption in migrating and spawning steelhead of the Snake River Basin. T Am Fish Soc. 143(6):1562–1568. doi: 10.1080/00028487.2014.954054.
  • Hinrichsen RA, Paulsen CM. 2020. Low carrying capacity a risk for threatened Chinook salmon. Ecol Model. 432:109223. doi: 10.1016/j.ecolmodel.2020.109223.
  • Hostetter NJ, Evans AF, Loge FJ, Rr O, Cramer BM, Fryer D, Collis K. 2015. The influence of individual fish characteristics on survival and detection: similarities across two salmonid species. N Am J Fish Manage. 35(5):1034–1045. doi: 10.1080/02755947.2015.1077176.
  • Houde ALS, Akbarzadeh A, Güntherd OP, Li S, Pattersone DA, Farrell AP, Hinch SG, Miller KM. 2019. Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity, temperature, but not dissolved oxygen. J Exp Biol. 222:jeb198036. doi: 10.1242/jeb.198036.
  • Izzo LK, Zydlewski J. 2017. Retrospective analysis of seasonal ocean growth rates of two sea winter Atlantic salmon in eastern Maine using historic scales. Mar Coast Fish. 9(1):357–372. doi: 10.1080/19425120.2017.1334723.
  • Jensen AJ, Maoileidigh NO, Thomas K, Einarsson SM, Haugland M, Erkinaro J, Fiske P, Friedland KD, Gudmundsdottir AK, Haantie J, et al. 2012. Age and fine-scale marine growth of Atlantic salmon post-smolts in the Northeast Atlantic. ICES J Mar Sci. 69(9):1668–1677. doi: 10.1093/icesjms/fss086.
  • Johnson J, Johnson T, Copeland T. 2012. Defining life histories of precocious male parr, minijack, and jack Chinook salmon using scale patterns. T Am Fish Soc. 141(6):1545–1556. doi: 10.1080/00028487.2012.705256.
  • Killen SS, Humphries M. 2014. Growth trajectory influences temperature preference in fish through an effect on metabolic rate. J Anim Ecol. 83(6):1513–1522. doi: 10.1111/1365-2656.12244.
  • Kovach M. 2021. Indigenous methodologies: characteristics, conversations, and contexts. 2nd ed. Toronto: University of Toronto Press.
  • Lamb JJ, Sandford BP, Axel GA, Nesbit MG, Sanderson BL. 2019. Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles: fish collection and tagging, 2019. Report of research by the Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, for the Division of Fish and Wildlife, Bonneville Power Administration, U.S. Department of Energy, Portland, Oregon.Contract No.: 46273 REL 163.
  • Lamb JJ, Sandford BP, Axel GA, Smith SG, Nesbit MG, Sanderson BL. 2020. Monitoring the migrations of wild Snake River spring/summer Chinook salmon juveniles: survival and timing, 2019. Report of research by the Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, for the Division of Fish and Wildlife, Bonneville Power Administration, U.S. Department of Energy, Portland, Oregon. Contract No.: 46273 REL 163.
  • Lee Q, Punt AE. 2018. Extracting a time-varying climate-driven growth index from otoliths for use in stock assessment models. Fish Res. 200:93–103. doi: 10.1016/j.fishres.2017.12.014.
  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc. 78(6):1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.
  • Morrongiello JR, Thresher RE, Smith DC. 2012. Aquatic biochronologies and climate change. Nat Clim Change. 2(12):849–857. doi: 10.1038/nclimate1616.
  • [NWFSC] Northwest Fisheries Science Center. 2022. Seasonal transport – a study to determine the seasonal effects of transporting fish from the Snake River to optimize a transportation strategy. Seattle (WA): Northwest Fisheries Science Center. https://www.fisheries.noaa.gov/inport/item/20563.
  • Peyronnet A, Friedland KD, Maoileidigh NO, Manning M, Poole WR. 2007. Links between patterns of marine growth and survival of Atlantic salmon Salmo salar L. J Fish Biol. 71(3):684–700. doi: 10.1111/j.1095-8649.2007.01538.x.
  • Portz DE, Woodley CM, Cech JJ. 2006. Stress-associated impacts of short-term holding on fishes. Rev Fish Biol Fisher. 16(2):125–170. doi: 10.1007/s11160-006-9012-z.
  • Quist MC, Isermann DA. 2017. Age and growth of fishes: principles and techniques. Bethesda (MD): American Fisheries Society.
  • R Core Team. 2023. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Reid AJ, Eckert LE, Lane JF, Young N, Hinch SG, Darimont CT, Cooke SJ, Ban NC, Marshall A. 2021. “Two-eyed seeing”: an indigenous framework to transform fisheries research and management. Fish Fisher. 22(2):243–261. doi: 10.1111/faf.12516.
  • Sogard SM. 1997. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull Mar Sci. 60:1129–1157.
  • Stan Development Team. 2022. Stan modeling language users guide and reference manual, version 2.34. https://mc-stan.org.
  • Stan Development Team. 2024. RStan: the R interface to Stan. R package version 2.32.5. https://mc-stan.org/.
  • Thorstensen MJ, Vandervelde CA, Bugg WS, Michaleski S, Vo L, Mackey TE, Lawrence MJ, Jeffries KM. 2022. Non-lethal sampling supports integrative movement research in freshwater fish. Front Genet. 13:19. doi: 10.3389/fgene.2022.795355.
  • Todd CD, Hanson NN, Boehme L, Revie CW, Marques AR. 2021. Variation in the post-smolt growth pattern of wild one sea-winter salmon (Salmo salar L.), and its linkage to surface warming in the eastern North Atlantic Ocean. J Fish Biol. 98(1):6–16. doi: 10.1111/jfb.14552.
  • Todd CD, Whyte BDM, Jc M, Revie CW, Lonergan ME, Hanson NN, Gillanders BM. 2014. A simple method of dating marine growth circuli on scales of wild one sea-winter and two sea-winter Atlantic salmon (Salmo salar). Can J Fish Aquat Sci. 71(5):645–655. doi: 10.1139/cjfas-2013-0359.
  • Ulaski ME, Finkle H, Westley PAH. 2020. Direction and magnitude of natural selection on body size differ among age-classes of seaward-migrating Pacific salmon. Evol Appl. 13(8):2000–2013. doi: 10.1111/eva.12957.
  • Vehtari A, Gabry J, Magnusson M, Yao Y, Bürkner P, Paananen T, Gelman A. 2024. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.7.0. https://mc-stan.org/loo/.
  • Vehtari A, Gelman A, Gabry J. 2017. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 27(5):1413–1432. doi: 10.1007/s11222-016-9696-4.
  • Walker BM, Sutton TM. 2016. Growth-increment formation using otoliths and scales for age-0 Chinook salmon. N Am J Fish Manage. 36(5):995–999. doi: 10.1080/02755947.2016.1184202.
  • Woodson LE, Wells BK, Weber PK, MacFarlane RB, Whitman GE, Johnson RC. 2013. Size, growth, and origin-dependent mortality of juvenile Chinook salmon Oncorhynchus tshawytscha during early ocean residence. Mar Ecol Prog Ser. 487:163–175. doi: 10.3354/meps10353.
  • Yasumiishi EM, Farley EV, Ruggerone GT, Agler BA, Wilson LI. 2016. Trends and factors influencing the length, compensatory growth, and size-selective mortality of juvenile Bristol Bay, Alaska, Sockeye salmon at sea. Mar Coast Fish. 8:315–333. doi: 10.1080/19425120.2016.1167793.