337
Views
7
CrossRef citations to date
0
Altmetric
Articles

Detection of doors in a voxel model, derived from a point cloud and its scanner trajectory, to improve the segmentation of the walkable space

, , & ORCID Icon
Pages 369-390 | Received 14 May 2018, Accepted 20 Nov 2018, Published online: 18 Dec 2018

References

  • Anagnostopoulos, I., Pătrăucean, V., Brilakis, I., & Vela, P. (2016). Detection of walls, floors, and ceilings in point cloud data. Construction Research Congress.
  • Boguslawski, P., Mahdjoubi, L., Zverovich, V., & Fadli, F. (2016). Automated construction of variable density navigable networks in a 3D indoor environment for emergency response. Automation in Construction, 72, 115–128. doi: 10.1016/j.autcon.2016.08.041
  • Brown, G., Nagel, C., Zlatanova, S., & Kolbe, T. H. (2013). Modelling 3D topographic space against indoor navigation requirements. In J. Pouliot, S. Daniel, F. Hubert, & A. Zamyadi (Eds.), Progress and new trends in 3D geoinformation sciences (pp. 1–22). Berlin: Springer. doi: 10.1007/978-3-642-29793-9_1
  • Budroni, A., & Boehm, J. (2010). Automated 3D reconstruction of interiors from point clouds. International Journal of Architectural Computing, 8, 55–73. doi: 10.1260/1478-0771.8.1.55
  • Diakité, A. A., & Zlatanova, S. (2016). Valid space description in BIM for 3D indoor navigation. International Journal of 3-D Information Modeling (IJ3DIM), 5, 1–17. Retrieved from http://EconPapers.repec.org/RePEc:igg:j3dim0:v:5:y:2016:i:3:p:1-17 doi: 10.4018/IJ3DIM.2016070101
  • Díaz Vilariño, L., Boguslawski, P., Khoshelham, K., Lorenzo, H., & Mahdjoubi, L. (2016). Indoor navigation from point clouds: 3D modelling and obstacle detection. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B4, 275–281. doi: 10.5194/isprsarchives-XLI-B4-275-2016
  • Díaz-Vilariño, L., Verbree, E., Zlatanova, S., & Diakité, A. (2017). Indoor modelling from SLAM-based laser scanner: Door detection. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 345–352.
  • Ekholm, A. (1996). A conceptual framework for classification of construction works. Electronic Journal of Information Technology in Construction ITcon, 1, 25–50.
  • Ekholm, A., & Fridqvist, S. (2000). A concept of space for building classification, product modelling, and design. Automation in Construction, 9, 315–328. doi: 10.1016/S0926-5805(99)00013-8
  • Fichtner, F. W., Diakité, A. A., Zlatanova, S., & Voûte, R. (2018). Semantic enrichment of octree structured point clouds for multi-story 3D pathfinding. Transactions in GIS, 22(1), 233–248. doi: 10.1111/tgis.12308
  • GeoSLAM. (2016). ZEB-REVO user's manual v1.0.2. unpublished.
  • Holenstein, C., Zlot, R., & Bosse, M. (2011). Watertight surface reconstruction of caves from 3D laser data. 2011 IEEE/RSJ international conference on intelligent robots and systems (pp. 3830–3837). doi:10.1109/IROS.2011.6095145
  • ISO. (2011). ISO/FDIS 21542: Building construction – accessibility and usability of the built environment. Retrieved from https://www.iso.org/standard/50498.html
  • Józsa, O. (2012). Analysis of 3d dynamic urban scenes based on Lidar point cloud sequences. Master's thesis, Budapest University of Technology and Economics.
  • Khoshelham, K., & Díaz-Vilariño, L. (2014). 3D modelling of interior spaces: Learning the language of indoor architecture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5, 321–326. doi: 10.5194/isprsarchives-XL-5-321-2014
  • Li, G. (2014). Automatic detection of temporary objects in mobile Lidar point clouds. Master's thesis, University of Twente.
  • Litomisky, K., & Bhanu, B. (2013). Removing moving objects from point cloud Scenes. In X. Jiang, O. R. Bellon, D. Goldgof, & T. Oishi (Eds.), Advances in depth image analysis and applications: International workshop, WDIA 2012, Tsukuba, Japan, November 11, 2012, Revised selected and invited papers (pp. 50–58). Berlin: Springer. doi:10.1007/978-3-642-40303-3_6
  • Macher, H., Landes, T., & Grussenmeyer, P. (2016). Validation of point clouds segmentation algorithms through their application to several case studies for indoor building modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5, 667–674. doi: 10.5194/isprsarchives-XLI-B5-667-2016
  • Nikoohemat, S., Peter, M., Elberink, S. O., & Vosselman, G. (2017). Exploiting indoor mobile laser scanner trajectories for semantic interpretation of point clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4, 355. doi: 10.5194/isprs-annals-IV-2-W4-355-2017
  • PostgresSQL. (2017). 8.9. Spatial relationships and measurements. Retrieved from http://postgis.net/docs/manual-dev/ST_ClusterDBSCAN.html
  • Quintana, B., Prieto, S. A., Adán, A., & Bosché, F. (2018). Door detection in 3D coloured point clouds of indoor environments. Automation in Construction, 85, 146–166. doi:10.1016/j.autcon.2017.10.016
  • Sirmacek, B., Shen, Y., Lindenbergh, R., Zlatanova, S., & Diakité, A. (2016). Comparison of ZEB1 and Leica C10 indoor laser scanning point clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-1, 143–149. doi:10.5194/isprs-annals-III-1-143-2016 doi: 10.5194/isprsannals-III-1-143-2016
  • SMART. (n.d.). 5.4.3.45 IfcSpace. Retrieved from http://www.buildingsmart-tech.org/ifc/IFC4/final/html/schema/ifcproductextension/lexical/ifcspace.htm
  • Staats, B. R., Diakité, A., Voûte, R. L., & Zlatanova, S. (2017). Automatic generation of indoor navigable space using a point cloud and its scanner trajectory. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2/W4, 393–400. doi: 10.5194/isprs-annals-IV-2-W4-393-2017
  • Thill, J.-C., Dao, T. H., & Zhou, Y. (2011). Traveling in the three-dimensional city: Applications in route planning, accessibility assessment, location analysis and beyond. Journal of Transport Geography, 19, 405–421. doi: 10.1016/j.jtrangeo.2010.11.007
  • Turner, E., Cheng, P., & Zakhor, A. (2015). Fast, automated, scalable generation of textured 3D models of indoor environments. IEEE Journal of Selected Topics in Signal Processing, 9, 409–421. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6985553 doi: 10.1109/JSTSP.2014.2381153
  • Vo, A.-V., Truong-Hong, L., Laefer, D. F., & Bertolotto, M. (2015). Octree-based region growing for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 88–100. doi: 10.1016/j.isprsjprs.2015.01.011
  • Yan, L., Liu, H., Tan, J., Li, Z., Xie, H., & Chen, C. (2016). Scan line based road marking extraction from mobile LiDAR point clouds. Sensors, 16, 903. doi: 10.3390/s16060903
  • Zheng, Y., Peter, M., Zhong, R., Oude Elberink, S., & Zhou, Q. (2018). Space subdivision in indoor mobile laser scanning point clouds based on scanline analysis. Sensors. 18(6), 1838. doi: 10.3390/s18061838
  • Zlatanova, S., Liu, L., & Sithole, G. (2013). A conceptual framework of space subdivision for indoor navigation. Publication of 3D GIS. Retrieved from https://3d.bk.tudelft.nl/szlatanova/thesis/html/refer/ps/ISA_2013_SZ_LL_GS_final.pdf
  • Zlatanova, S., Liu, L., Sithole, G., Zhao, J., & Mortari, F. (2014). Space subdivision for indoor applications. Delft University of Technology, OTB Research Institute for the Built Environment. Retrieved from http://repository.tudelft.nl/islandora/object/uuid:c3ef4c87-9c35-4d05-8877-a074c3f7fdbf?collection=research

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.