178
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Stable SiO2–TiO2 composite-based nanofluid of improved rheological behaviour for high-temperature oilfield applications

&
Pages 51-61 | Received 07 May 2019, Accepted 30 Dec 2019, Published online: 16 Jan 2020

References

  • Abbasi, S. (2018). Investigation of the enhancement and optimization of the photocatalytic activity of modified TiO2 nanoparticles with SnO2 nanoparticles using statistical method. Materials Research Express, 5(6), 066302.
  • Abbasi, S. (2019). Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis. Environmental Monitoring and Assessment, 191(4), 206.
  • Agromayor, R., Cabaleiro, D., Pardinas, A., Vallejo, J., Fernandez-Seara, J., & Lugo, L. (2016). Heat transfer performance of functionalized graphene nanoplatelet aqueous nanofluids. Materials, 9, 455.
  • Amiri, A., Sadri, R., Shanbedi, M., Ahmadi, G., Kazi, S. N., Chew, B. T., & Zubir, M. N. M. (2015). Synthesis of ethylene glycol-treated graphene nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Conversion and Management, 101, 767–777.
  • Bayat, A. E., Junin, R., Samsuri, A., Piroozian, A., & Hokmabadi, M. (2014). Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy & Fuels : an American Chemical Society Journal, 28(10), 6255–6266.
  • Chen, X., Xie, X. T., Li, Y., & Chen, S. (2018). Investigation of the synergistic effect of alumina nanofluids and surfactant on oil recovery-interfacial tension, emulsion stability and viscosity reduction of heavy oil. Petroleum Science and Technology, 36(15), 1131–1136.
  • Cherecheş, E. I., Prado, J. I., Cherecheş, M., Minea, A. A., & Lugo, L. (2019). Experimental study on thermophysical properties of alumina nanoparticle enhanced ionic liquids. Journal of Molecular Liquids, 291, 111332.
  • El-hoshoudy, A. N., Desouky, S. E. M., Al-Sabagh, A. M., Betiha, M. A., & Mahmoud, S. (2017). Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate. Egyptian Journal of Petroleum, 26(3), 779–785.
  • Fatimah, A., Almohsin, A., Michael, F. M., Bataweel, M., & Alsharaeh, E. (2019). Polymer nanocomposites for water shutoff application – A review. Materials Research Express, 6, 032001.
  • Hadadian, M., Goharshadi, E. K., & Youssefi, A. (2014). Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. Journal of Nanoparticle Research, 16(12), 2788.
  • Keyvani, M., Afrand, M., Toghraie, D., & Reiszadeh, M. (2018). An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: Developing a new correlation. Journal of Molecular Liquids, 266, 211–217.
  • Król-Morkisz, K., & Pielichowska, K. (2019). Thermal decomposition of polymer nanocomposites with functionalized nanoparticles: Polymer composites with functionalized nanoparticles, in Polymer composites with functionalized nanoparticles : synthesis, properties, and applications, Elsevier Inc., cop. 2019. ISBN: 978-0-12-814064-2. 430–435
  • Kumar, R. S., & Sharma, T. (2018). Stability and rheological properties of nanofluids stabilized by sio2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 539, 171–183.
  • Liu, H., Jin, X., & Ding, B. (2016). Application of nanotechnology in petroleum exploration and development. Petroleum Exploration and Development, 43(6), 1107–1115.
  • Lu, X., Jiang, H., Li, J., Zhao, L., Pei, Y., Zhao, Y., … Fang, W. (2015). Polymer thermal degradation in high-temperature reservoirs. Petroleum Science and Technology, 33(17–18), 1571–1579.
  • Mahbubul, I. M., Saidur, R., Amalina, M. A., Elcioglu, E. B., & Okutucu-Ozyurt, T. (2015). Effective ultrasonication process for better colloidal dispersion of nanofluid. Ultrasonics Sonochemistry, 26, 361–369.
  • Marandi, S. Z., Salehi, M. B., & Moghadam, A. M. (2018). Sand control: Experimental performance of polyacrylamide hydrogels. Journal of Petroleum Science and Engineering, 170, 430–439.
  • Medhi, S., Chowdhury, S., Gupta, D. K., & Mazumdar, A. (2019). An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids. Journal of Petroleum Exploration and Production Technology, ISSN: 2190: 0566, 1–11.
  • Minea, A. A. (2019). A review on electrical conductivity of nanoparticle-enhanced fluids. Nanomaterials, 9, 1592.
  • Moldoveanu, G. M., Ibanescu, C., Danu, M., & Minea, A. A. (2018). Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study. Journal of Molecular Liquids, 253, 188–196.
  • Moradi, A., Toghraie, D., Isfahani, A. H. M., & Hosseinian, A. (2019). An experimental study on MWCNT–water nanofluids flow and transfer in double-pipe heat exchanger using porous media. Journal of Thermal Analysis and Calorimetry, 137(5), 1797–1807.
  • Narukulla, R., Ojha, U., & Sharma, T. (2017). Stable & re-dispersible polyacryloyl hydrazide–Ag nanocomposite Pickering emulsions. Soft Matter, 13, 6118–6128.
  • Raud, R., Hosterman, B., Diana, A., Steinberg, T. A., & Will, G. (2017). Experimental study of the interactivity, specific heat, and latent heat of fusion of water based nanofluids. Applied Thermal Engineering, 117, 164–168.
  • Rostami, P., Sharifi, M., Aminshahidy, B., & Fahimpour, J. (2019). Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. Journal of Dispersion Science and Technology, ISSN : 1532:2351,1–12.
  • Saha, R., Uppaluri, R. V. S., & Tiwari, P. (2018). Silica nanoparticle assisted polymer flooding of heavy crude oil: Emulsification, rheology, and wettability alteration characteristics. Industrial & Engineering Chemistry Research, 57(18), 6364–6376.
  • Sharma, T., Iglauer, S., & Sangwai, J. S. (2016). Silica nanofluids in an oilfield polymer polyacrylamide: Interfacial properties, wettability alteration, and applications for chemical enhanced oil recovery. Industrial and Engineering Chemistry Research, 55(48), 12387–12397.
  • Sharma, T., Kumar, G. S., & Sangwai, J. S. (2014). Enhanced oil recovery using oil-in-water (o/w) emulsion stabilized by nanoparticle, surfactant and polymer in the presence of NaCl. Geosystem Engineering, 17(3), 195–205.
  • Tapias, F. A., Lizcano, J. C., & Lopes, R. B. (2018). Effects of salts and temperature on rheological and viscoelastic behavior of low molecular weight HPAM solutions. Revista Fuentes: El reventón energético, 16(1), 19–35.
  • Vallejo, J. P., Pérez-Tavernier, J., Cabaleiro, D., Fernández-Seara, J., & Lugo, L. (2018). Potential heat transfer enhancement of functionalized graphene nanoplatelet dispersions in a propylene glycol-water mixture. Thermophysical profile. The Journal of Chemical Thermodynamics, 123, 174–184.
  • Yang, L., & Hu, Y. (2017). Toward TiO2 nanofluids—Part 1: Preparation and properties. Nanoscale Research Letters, 12, 417.
  • Yang, M. H. (1999). Rheological behavior of polyacrylamide solution. Journal of Polymer Engineering, 19(5), 371–381.
  • Yang, Y., Kelkar, A. V., Corti, D. S., & Franses, E. I. (2016). Effect of interparticle interactions on agglomeration and sedimentation rates of colloidal silica microspheres. Langmuir, 32(20), 5111–5123.
  • Zadeh, A. D., & Toghraie, D. (2018). Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. Journal of Thermal Analysis and Calorimetry, 131(2), 1449–1461.
  • Zawrah, M. F., Khattab, R. M., Girgis, L. G., El Daidamony, H., & Abdel Aziz, R. E. (2016). Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC Journal, 12(3), 227–234.
  • Zheng, C., Cheng, Y., Wei, Q., Li, X., & Zhang, Z. (2017). Suspension of surface-modified nano-SiO2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 169–177.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.