64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biosorption of cadmium by Enterobacter ludwigii isolated from soil contaminated with cadmium near a coal-fired power plant in Korea

& ORCID Icon
Pages 284-292 | Received 18 Jul 2023, Accepted 17 Aug 2023, Published online: 23 Aug 2023

References

  • Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219–223. https://doi.org/10.1007/s00128-010-0043-8
  • Aleem, A., Isar, J., & Malik, A. (2003). Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizospheric soil. Bioresource Technology, 86(1), 7–13. https://doi.org/10.1016/S0960-8524(02)00134-7
  • Ansari, R. A., Qureshi, A., & Ramteke, D. (2016). Isolation and characterization of heavy-metal resistant microbes from industrial soil. International Journal of Environmental Sciences, 5(1), 53–65. https://doi.org/10.6088/ijes.6063
  • Barka, N., Abdennouri, M., El Makhfouk, M., & Qourzal, S. (2013). Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. Journal of Environmental Chemical Engineering, 1(3), 144–149. https://doi.org/10.1016/j.jece.2013.04.008
  • Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q., & Flynn, T. M. (2011). The thermodynamic ladder in geomicrobiology. American Journal of Science, 311(3), 183–210. https://doi.org/10.2475/03.2011.01
  • Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Chaplygin, V., Zamulina, I., Sushkova, S., Fedorenko, A., Ghazaryan, K., Movsesyan, H., & Makhinya, D. (2019). Study of copper, lead, and zinc speciation in the Haplic Chernozem surrounding coal-fired power plant. Applied Geochemistry, 104, 102–108. https://doi.org/10.1016/j.apgeochem.2019.03.016
  • Chon, H.-T., Lee, J.-S., & Lee, J.-U. (2011). Heavy metal contamination of soil, its risk assessment and bioremediation. Geosystem Engineering, 14(4), 191–206. https://doi.org/10.1080/12269328.2011.10541350
  • Choudhary, S., & Sar, P. (2009). Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresource Technology, 100(9), 2482–2492. https://doi.org/10.1016/j.biortech.2008.12.015
  • Chunhabundit, R. (2016). Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicological Research, 32(1), 65–72. https://doi.org/10.5487/TR.2016.32.1.065
  • Das, A., Belgaonkar, P., Raman, A. S., Banu, S., & Osborne, J. W. (2017). Bioremoval of lead using Pennisetum purpureum augmented with Enterobacter cloacae-VITPASJ1: A pot culture approach. Environmental Science and Pollution Research, 24, 15444–15453. https://doi.org/10.1007/s11356-017-8988-3
  • Daughney, C. J., Fein, J. B., & Yee, N. (1998). A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chemical Geology, 144, 161–176. https://doi.org/10.1016/S0009-2541(97)00124-1
  • Daughney, C. J., Fowle, D. A., & Fortin, D. (2001). The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochimica et Cosmochimica Acta, 65, 1025–1035. https://doi.org/10.1016/S0016-7037(00)00587-1
  • De, J., Ramaiah, N., & Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10(4), 471–477. https://doi.org/10.1007/s10126-008-9083-z
  • El-Sheekh, M., El Sabagh, S., El-Souod, G. A., & Elbeltagy, A. (2019). Biosorption of cadmium from aqueous solution by free and immobilized dry biomass of Chlorella vulgaris. International Journal of Environmental Health Research, 3(3), 511–521. https://doi.org/10.1007/s41742-019-00190-z
  • Fein, J. B., Daughney, C. J., Yee, N., & Davis, T. (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmochimica Acta, 61, 3319–3328. https://doi.org/10.1016/S0016-7037(97)00166-X
  • Hetzer, A., Daughney, C. J., & Morgan, H. W. (2006). Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus. Applied and Environmental Microbiology, 72(6), 4020–4027. https://doi.org/10.1128/AEM.00295-06
  • Hill, J., Stark, B. A., Wilkinson, J. M., Curran, M. K., Lean, I. J., Hall, J. E., & Livesey, C. T. (1998). Accumulation of potentially toxic elements by sheep given diets containing soil and sewage sludge. 1. Effect of type of soil and level of sewage sludge in the diet. Animal Science, 67(1), 73–86. https://doi.org/10.1017/S1357729800009814
  • Hoffmann, H., Stindl, S., Stumpf, A., Mehlen, A., Monget, D., Heesemann, J., Schleifer, K. H., & Roggenkamp, A. (2005). Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Systematic and Applied Microbiology, 28(3), 206–212. https://doi.org/10.1016/j.syapm.2004.12.009
  • Huang, X., Hu, J., Qin, F., Quan, W., Cao, R., Fan, M., & Wu, X. (2017). Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). International Journal of Environmental Research and Public Health, 14(12), 1589. https://doi.org/10.3390/ijerph14121589
  • Javanbakht, V., Alavi, S. A., & Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775–1787. https://doi.org/10.1016/B978-0-12-822965-1.00001-5
  • Ko, M.-S., Park, H.-S., Kim, K.-W., & Lee, J.-U. (2010). Experimental study on stabilization of heavy metals by biofilm developed on soil particle surface. Journal of the Korean Society of Mineral & Energy Resources Engineers, 47(2), 158–167.
  • Korea Ministry of Environment. (2017). Soil contamination prevention and restoration. Retrieved August 22, 2021, from http://eng.me.go.kr/eng/web/index.do?menuId=313
  • Liang, W., Wang, G., Peng, C., Tan, J., Wan, J., Sun, P., Li, Q., Ji, X., Zhang, Q., Wu, Y., & Zhang, W. (2022). Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. Journal of Hazardous Materials, 426, 127993. https://doi.org/10.1016/j.jhazmat.2021.127993
  • Limcharoensuk, T., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrachue, M., Pokethitiyook, P., & Auesukaree, C. (2015). Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322–330. https://doi.org/10.1016/j.ecoenv.2015.08.013
  • Liu, D., Quan, Y., Ren, Z., & Wu, G. (2017). Assessment of heavy metal contamination in soil associated with Chinese coal-fired power plants: A case study in Xilingol, Inner Mongolia. International Journal of Sustainable Development and World Ecology, 24(5), 439–443. https://doi.org/10.1080/13504509.2016.1273269
  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3), 409–420. https://doi.org/10.1007/s00254-006-0336-8
  • Mathivanan, K., & Rajaram, R. (2014). Isolation and characterisation of cadmium-resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chemistry and Ecology, 30(7), 622–635. https://doi.org/10.1080/02757540.2014.889125
  • Mirghaffari, N., Moeini, E., & Farhadian, O. (2014). Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. Journal of Applied Phycology, 27(1), 311–320. https://doi.org/10.1007/s10811-014-0345-z
  • Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: An alarming threat to environment and human health. In R. Sobti, N. Arora, & R. Kothari (Eds.), Environmental Biotechnology: For Sustainable Future (pp. 103–125). Springer Singapore. https://doi.org/10.1007/978-981-10-7284-0_5
  • Munawer, M. E. (2017). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96. https://doi.org/10.1016/j.jsm.2017.12.007
  • Mwandira, W., Nakashima, K., Kawasaki, S., Arabelo, A., Banda, K., Nyambe, I., Chirwa, M., Ito, M., Sato, T., Igarashi, T., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Scientific Reports, 10, 21189. https://doi.org/10.1038/s41598-020-78187-4
  • Park, J. H., & Chon, H. T. (2016). Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environmental Science and Pollution Research, 23(12), 1814–11822. https://doi.org/10.1007/s11356-016-6335-8
  • Pau-Roblot, C., Lequart-Pillon, M., Apanga, L., Pilard, S., Courtois, J., & Pawlicki-Jullian, N. (2013). Structural features and bioremediation activity of an exopolysaccharide produced by a strain of Enterobacter ludwigii isolated in the Chernobyl exclusion zone. Carbohydrate Polymers, 93(1), 154–162. https://doi.org/10.1016/j.carbpol.2012.09.025
  • Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M., & Stackebrandt, E. (1996). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: Proposal of Nocardiopsaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 46(4), 1088–1092. https://doi.org/10.1099/00207713-46-4-1088
  • Rosso, L., Lobry, J. R., Bajard, S., & Flandrois, J. P. (1995). Convenient model to describe the combined effects of temperature and pH on microbial growth. Applied and Environmental Microbiology, 61(2), 610–616. https://doi.org/10.1128/aem.61.2.610-616.1995
  • Sameera, V., Naga, D. C., Srinu, B. G., & Ravi, T. Y. (2011). Role of biosorption in environmental cleanup. Journal of Microbial & Biochemical Technology, R1, 001. https://doi.org/10.4172/1948-5948.R1-001
  • Saurav, K., & Kannabiran, K. (2011). Biosorption of Cr(III) and Cr(VI) by Streptomyces VITSVK9 spp. Annals of Microbiology, 61(4), 833–841. https://doi.org/10.1007/s13213-011-0204-y
  • Sharma, P., & Melkania, U. (2018). Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli. Waste Management, 75, 289–296. https://doi.org/10.1016/j.wasman.2018.02.005
  • Siripornadulsil, S., & Siripornadulsil, W. (2013). Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation. Ecotoxicology and Environmental Safety, 94, 94–103. https://doi.org/10.1016/j.ecoenv.2013.05.002
  • Song, C.-W., Han, H.-J., & Lee, J.-U. (2019a). Investigation on geochemical characteristics of heavy metals in soils in the vicinity of Samcheonpo and Hadong coal-fired power plants in Korea. Economic and Environmental Geology, 52(2), 141–158. https://doi.org/10.9719/EEG.2019.52.2.141
  • Song, C.-W., Han, H.-J., & Lee, J.-U. (2019b). Investigation on heavy metal distribution in soils around Boryeong coal-fired power plant. Journal of the Korean Society of Mineral & Energy Resources Engineers, 56(1), 10–22. https://doi.org/10.32390/ksmer.2019.56.1.010
  • Suriya, J., Bharathiraja, S., & Rajasekaran, R. (2013). Biosorption of heavy metals by biomass of Enterobacter cloacae isolated from metal-polluted soils. International Journal of ChemTech Research, 5(3), 1329–1338.
  • Tangaromsuk, J., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2002). Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresource Technology, 85(1), 103–105. https://doi.org/10.1016/S0960-8524(02)00066-4
  • Tran, T. N., & Lee, J.-U. (2023). Biosorption of Cd by an indigenous Cd-resistant bacterium isolated from soil contaminated with Cd. Geosciences Journal. (in review).
  • Tsezos, M. (1999). Biosorption of metals. The experience accumulated and the outlook for technology development. Process Metallurgy, 9, 171–173. https://doi.org/10.1016/S1572-4409(99)80105-9
  • US EPA. (2017). Cadmium in drinking water. Retrieved August 22, 2021, from http://www.wqa.org/learn-about-ater/common-contaminants/cadmium
  • Velásquez, L., & Dussan, J. (2009). Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167, 713–716. https://doi.org/10.1016/j.jhazmat.2009.01.044
  • Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216. https://doi.org/10.1016/S0304-386X(00)00160-2
  • Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250. https://doi.org/10.1021/bp00033a001
  • Vullo, D. L., Ceretti, H. M., Daniel, M. A., Ramirez, S. A. M., & Zalts, A. (2008). Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 99(13), 5574–5581. https://doi.org/10.1016/j.biortech.2007.10.060
  • Yakoubi, L., Benmalek, Y., Berka, S., & Benayad, T. (2017). Isolation and identification of cadmium resistant bacteria from cement plant soil in Algeria. International Journal of Research in Applied, Natural and Social Sciences, 5, 23–30.
  • Zhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372–380. https://doi.org/10.1007/s11356-016-7810-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.