2,015
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Antifungal Effects of Silver Phytonanoparticles from Yucca shilerifera Against Strawberry Soil-Borne Pathogens: Fusarium solani and Macrophomina phaseolina

, , &
Pages 47-51 | Received 27 Nov 2017, Accepted 28 Feb 2018, Published online: 29 Mar 2018

References

  • Liu L, Ji M, Chen M, et al. The flavor and nutritional characteristic of four strawberry varieties cultured in soilless system. Food Sci Nutr. 2016;6:858–868.
  • Narro-Sanchez J, Davalos-Gonzalez PA, Velasquez-Valle R, et al. Main strawberry diseases in Irapuato, Guanajuato, and Zamora, Michoacan, Mexico. Acta Hortic. 2006;708:167–171.
  • Sharifi K, Mahdavi M. First report of strawberry crown and root rot caused by Macrophomina phaseolina in Iran. Iran J Plant Pathol. 2011;47:161.
  • Pastrana AM, Capote N, De los Santos B, et al. First report of Fusarium solani causing crown and root rot on strawberry crops in southwestern Spain. Plant Dis. 2014;98:161.
  • Mehmood N, Riaz A, Jabeen N, et al. First report of Fusarium solani causing fruit rot of strawberry in Pakistan. Plant Dis. 2017;9:1681.
  • Nam MH, Park MS, Kim HG, et al. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J Microbiol Biotechnol. 2009;19:520–524.
  • Pastrana A, Basallote-Ureba M, Aguado A, et al. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol Mediterr. 2016;55:109–120.
  • Adesina MF, Lembke A, Costa R, et al. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site‐dependent composition and diversity revealed. Soil Biol Biochem. 2007;39:2818–2828.
  • Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71:7589–7593.
  • Lamsal K, Kim S-W, Jung JH, et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology. 2011;39:26–32.
  • Piacente S, Pizza C, Oleszek W. Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev. 2005;4:177–190.
  • Miyakoshi M, Tamura Y, Masuda H, et al. Antiyeast steroidal saponins from Yucca schidigera (Mohave Yucca), a new anti-food-deteriorating agent. J Nat Prod. 2000;63:332–338.
  • Ezealisiji KM, Noundou XS, Ukwueze SE. Green synthesis and characterization of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci. 2017;7:905--911.
  • Rejinolda NS, Muthunarayanan M, Muthuchelian K, et al. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydr Polym. 2011;84:407–416.
  • Medda S, Hajra A, Dey U. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci. 2015;5:875–880.
  • Ouda SM. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Res J Microbiol. 2014;9:34–42.
  • Boxi SS, Mukherjee K, Parja S. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology. 2016;8:085103.
  • Mahdizadeh V, Safaie N, Khelghatibana F. Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crops Prot. 2015;4:291–300.
  • Villamizar-Gallardo R, Cruz OJF, Ortiz-Rodriguez OR. Efeito fungicida de nanopartículas de prata em fungos toxigênicos em cacaueiro. Pesq Agropec Bras. 2016;51:1929–1936.
  • Shafaghat A. Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synth React Inorg Met-Org Nano-Met Chem. 2015;45:381–387.
  • Kim SW, Kim KS, Lamsal K, et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol. 2009;19:760–764.
  • Kotzybik K, Gräf V, Kugler L, et al. Influence of different nanomaterials on growth and mycotoxin production of Penicillium verrucosum. PLoS One. 2016;11:e0150855.
  • Gosens I, Post JA, de la Fonteyne LJ, et al. Impact of agglomeration state of nano and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7:37.
  • Müller KH, Motskin M, Philpott AJ, et al. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials. 2014;35:1074–1088.
  • Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ. 2015;521–522:305–314.
  • Dakal TC, Kumar A, Majumdar RS, et al. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831.
  • Ishida K, Cipriano TF, Rocha GM, et al. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz. 2014;109:220–228.