969
Views
1
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Genetically Independent Tetranucleotide to Hexanucleotide Core Motif SSR Markers for Identifying Lentinula edodes Cultivars

, , , &
Pages 466-472 | Received 25 Jul 2019, Accepted 03 Sep 2019, Published online: 03 Oct 2019

References

  • Terashima K, Matsumoto T. Strain typing of shiitake (Lentinula edodes) cultivars by AFLP analysis, focusing on a heat-dried fruiting body. Mycoscience. 2004;45(1):79–82.
  • Babasaki K, Neda H, Murata H. megB1, a novel macroevolutionary genomic marker of the fungal phylum Basidiomycota. Biosci Biotechnol Biochem. 2007;71(8):1927–1939.
  • Song XX, Zhao Y, Song CY, et al. Intergenic spacer 1 (IGS1) polymorphism map: a marker for the initial classification of cultivated Lentinula edodes strains in China. J Integr Agr. 2018;17(11):2458–2466.
  • Zhang R, Huang C, Zheng S, et al. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Appl Microbiol Biotechnol. 2007;74(1):140–145.
  • Zhang Y, Molina FI. Strain typing of Lentinula edodes by random amplified polymorphic DNA assay. FEMS Microbiol Lett. 1995;131(1):17–20.
  • Wu X, Li H, Zhao W, et al. SCAR makers and multiplex PCR-based rapid molecular typing of Lentinula edodes strains. Curr Microbiol. 2010;61(5):381–389.
  • Lee HY, Moon S, Shim D, et al. Development of 44 novel polymorphic SSR markers for determination of shiitake mushroom (Lentinula edodes) cultivars. Genes. 2017;8(4):109.
  • Moon S, Lee HY, Shim D, et al. Development and molecular characterization of novel polymorphic genomic DNA SSR markers in Lentinula edodes. Mycobiology. 2017;45(2):105–109.
  • Guichoux E, Lagache L, Wagner S, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11(4):591–611.
  • Arima T, Morinaga T. Electrophoretic karyotype of Lentinus edodes. Trans Mycol Soc Japan. 1993;34:481–485.
  • Miyazaki K, Huang F, Zhang B, et al. Genetic map of a basidiomycete fungus, Lentinula edodes (shiitake mushroom), constructed by tetrad analysis. Breed Sci. 2008;58(1):23–30.
  • Cipriani G, Marrazzo MT, Di Gaspero G, et al. A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol. 2008;8(1):127.
  • Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5(6):435–445.
  • Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006;51(2):253–265.
  • Munyard KA, Ledger JM, Lee CY, et al. Characterization and multiplex genotyping of Alpaca tetranucleotide microsatellite markers. Small Ruminant Res. 2009;85(2–3):153–156.
  • De la Rosa R, Belaj A, Muñoz-Mérida A, et al. Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. J Am Soc Hortic Sci. 2013;138(4):290–296.
  • Faria DA, Mamani EMC, Pappas GJ Jr., et al. Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet Genomes. 2011;7(1):63–77.
  • Kishine M, Tsutsumi K, Kitta K. A set of tetra-nucleotide core motif SSR markers for efficient identification of potato (Solanum tuberosum) cultivars. Breed Sci. 2017;67(5):544–547.
  • Shim D, Park SG, Kim K, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24–25.
  • Faircloth BC. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour. 2008;8(1):92–94.
  • Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001;11(8):1441–1452.
  • Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
  • Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5(1):113.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729.
  • Blacket MJ, Robin C, Good RT, et al. Universal primers for fluorescent labelling of PCR fragments – an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour. 2012;12(3):456–463.
  • Brownstein MJ, Carpten JD, Smith JR. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques. 1996;20(6):1004–1010.
  • Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16(5):1099–1106.
  • Chen L, Gong Y, Cai Y, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One. 2016;11(8):e0160336.
  • Sakamoto Y, Nakade K, Sato S, et al. Lentinula edodes genome survey and postharvest transcriptome analysis. Appl Environ Microbiol. 2017;83:e02990-16.