1,143
Views
1
CrossRef citations to date
0
Altmetric
Research Notes

Experimental Analysis of Interactions Among Saprotrophic Fungi from A Phosphorous-Poor Desert Oasis in the Chihuahuan Desert

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 410-417 | Received 11 Nov 2019, Accepted 22 Jun 2020, Published online: 13 Jul 2020

References

  • Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491–502.
  • Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol. 2011;90(6):1829–1845.
  • Cordero OX, Datta MS. Microbial interactions and community assembly at microscales. Curr Opin Microbiol. 2016;31:227–234.
  • Mitri S, Richard Foster K. The genotypic view of social interactions in microbial communities. Annu Rev Genet. 2013;47:247–273.
  • Kawai T, Tokeshi M. Testing the facilitation–competition paradigm under the stress-gradient hypothesis: decoupling multiple stress factors. Proc Biol Sci. 2007;274(1624):2503–2508.
  • Choudhury AJA, Trevelyn PMJ, Boswell GP. A mathematical model of nutrient influence on fungal competition. J Theor Biol. 2017;438:9–20.
  • Hiscox J, Clarkson G, Savoury M, et al. Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecol. 2016;21:32–42.
  • Grattan RM, Suberkropp K. Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. J N Am Benthol Soc. 2001;20(1):33–43.
  • Gulis V, Suberkropp K. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat Microb Ecol. 2003;30:149–157.
  • Lohberger A, Spangenberg JE, Ventura Y, et al. Effect of organic carbon and nitrogen on the interactions of Morchella spp. and bacteria dispersing on their mycelium. Front Microbiol. 2019;10:124.
  • Deveau A, Bonito G, Uehling J, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42(3):335–352.
  • Velez P, Espinosa-Asuar L, Figueroa M, et al. Nutrient dependent cross-kingdom interactions: microfungi and bacteria from an oligotrophic desert oasis. Front Microbiol. 2018;9:1755.
  • Mckee JW, Jones NW, Long LE. Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull. 1990;102(5):593–561.
  • Elser JJ, Schampel JH, Garcia‐Pichel F, et al. Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshwater Biol. 2005;50(11):1808–1825.
  • Lee ZM, Steger L, Corman JR, et al. Response of a stoichiometrically imbalanced ecosystem to manipulation of nutrient supplies and ratios. PloS One. 2015;10(4):e0123949.
  • Boddy L. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol. 2000;31(3):185–194.
  • Hiscox J, O'leary J, Boddy L. Fungus wars: basidiomycete battles in wood decay. Stud Mycol. 2018;89:117–124.
  • Hiscox J, Savoury M, Vaughan IP, et al. Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecol. 2015;14:24–32.
  • Keller NP, TurneR G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–947.
  • Chatterjee S, Kuang Y, Splivallo R, et al. Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 2016;16:83.
  • Ingham RE, Trofymow JA, Ingham ER, et al. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr. 1985;55(1):119–140.
  • Meyer ER. Late‐quarternary paleoecology of the Cuatro Cienegas Basin, Coahuila, Mexico. Ecology. 1973;54(5):982–995.
  • Wolaver BD, Sharp JM, Jr Tidwell VC, et al. An integrative approach to sustainable groundwater and associated groundwater-dependent system management in arid karst aquifers: Cuatrociénegas Basin, Mexico. International Association Hydrogeologists. 2008.
  • CONAGUA. Normales climatológicas por estación. Ciudad de México: Servicio Meteorológico Nacional, CONAGUA; 2015.
  • Reddi GS, Rao AS. Antagonism of soil actinomycetes to some soil-borne plant pathogenic fungi. Indian Phytopathol. 1971;24:649–657.
  • Rothrock CS, Gottlieb D. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol. 1984;30(12):1440–1447.
  • Crawford DL, Lynch JM, Whipps JM, et al. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol. 1993;59(11):3899–38905.
  • Chamberlain K, Crawford DL. In vitro and in vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol. 1999;23(1):641–646.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675.
  • Mishra VK. In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol. 2010;2:28–35.
  • Asthana A, Shearer CA. Antagonistic activity of Pseudohalonectria and Ophioceras. Mycologia. 1990;82(5):554–561.
  • Hammer Ø, Harper DA, Ryan PD. PAST-PAlaeontological Statistics. 2001. http://palaeo-electronica.org/2001_1/past/pastrog/past.pdf
  • Skidmore AM, Dickinson CH. Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans Brit Mycol Soc. 1976;66(1):57–64.
  • Shearer CA, Zare-Maivan H. In vitro hyphal interactions among wood- and leaf-inhabiting Ascomycetes and Fungi Imperfecti from freshwater habitats. Mycologia. 1988;80(1):31–37.
  • Yuen TK, Hyde KD, Hodgkiss IJ. Interspecific interactions among tropical and subtropical freshwater fungi. Microb Ecol. 1999;37(4):257–262.
  • Miller JD, Jones EBG, Moharir YE, et al. Colonization of wood blocks by marine fungi in Langstone Harbour. Bot Mar. 1985;28:251–257.
  • Strongman DB, Miller JD, Calhoun L, et al. The biochemical basis for interference competition among some lignicolous marine fungi. Bot Mar. 1987;30:21–26.
  • Pérez-Gutiérrez RA, López-Ramírez V, Islas A, et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 2013;7(3):487–497.
  • Ponce-Soto GY, Aguirre-Von-Wobeser E, Eguiarte LE, et al. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Front Microbiol. 2015;6:246.
  • Zapién-Campos R, Olmedo-Álvarez G, Santillán M. Antagonistic interactions are sufficient to explain self-assemblage of bacterial communities in a homogeneous environment: a computational modeling approach. Front Microbiol. 2015;6:489.
  • Van Valen L. A new evolutionary law. Evol Theory. 1973;1:1–30.
  • Gause CF. The struggle for existence. Baltimore: Williams & Wilkins; 1971.
  • Pandey RR, Arora DK, Dubey RC. Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia. 1993;124(1):31–39.
  • Morón-Ríos A, Gómez-Cornelio S, Ortega-Morales BO, et al. Interactions between abundant fungal species influence the fungal community assemblage on limestone. PloS One. 2017;12(12):e0188443.
  • Barbosa MA, Rehn KG, Menezes M, et al. Antagonism of Trichoderma species on Cladosporium herbarum and their enzimatic characterization. Braz J Microbiol. 2001;32:98–104.
  • Mille‐Lindblom C, Fischer H, Tranvik L. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos. 2006;113(2):233–242.
  • Baschien C, Rode G, Böckelmann U, et al. Interactions between hyphosphere-associated bacteria and the fungus Cladosporium herbarum on aquatic leaf litter. Microb Ecol. 2009;58(3):642–650.
  • Palumbo JD, Baker JL, Mahoney NE. Microbial ecology isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol. 2006;52(1):45–52.
  • Ranjbariyan A, Shams-Ghahfarokhi M, Kalantari S, et al. Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iran J Microbiol. 2011;3(3):140–146.
  • Saber W, Ghanem KM, El-Hersh MS. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mung bean plants. Res J Microbiol. 2009;4(7):235–250.
  • Melikyan LR. Antifungal activity of several xylotrophic coprinoid mushrooms against filamentous fungi. Electron J Nat Sci. 2015;25:12–15.
  • Heilmann-Clausen J, Boddy L. Inhibition and stimulation effects in communities of wood decay fungi: exudates from colonized wood influence growth by other species. Microb Ecol. 2005;49(3):399–406.
  • Miles LA, Lopera CA, González S, et al. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl. 2012;57(5):697–710.
  • Booth C. Chapter II. Fungal culture media. In: Booth C, editor. Methods in microbiology. London: Academic Press; 1971.
  • Holmgren M, Scheffer M. Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol. 2010;98(6):1269–1275.
  • Contreras-Balderas S. Environmental impacts in Cuatro Ciénegas, Coahuila, México: a commentary. J Arizona-Nevada Acad Sci. 1984;19:85–88.
  • Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci USA. 2006;103(17):6565–6570.